期刊文献+

粒子群-神经网络混合算法在短期电价预测中的应用 被引量:3

Application of particle group and neural network hybrid algorithm for short term electric power price forecast
原文传递
导出
摘要 为了提高电力市场环境下的电价预测精度,在研究短期电价预测中采用了粒子群和反向传播神经网络相结合的混合算法,先利用粒子群算法确定初值,再采用神经网络完成给定精度的学习。对我国四川电网电价进行预测的结果表明,粒子群优化的神经网络算法收敛速度快于神经网络算法,预报精度显著提高,平均百分比误差可控制在2%以内,平均绝对误差最大值为1.87$/MWh。该算法可有效用于电力系统的短期电价预测。 In order to improve the forecast precision of the power market, the mixed algorithm of particle swarm and back propagation network is used for the short term price forecast. Firstly the particle swarm algorithm is used to determine the initial values, the network is used for the given accuracy, then the electric power price in Si Chuan power market is forecasted. The results indicate that the mixed algorithm has a quicker convergence rate than back propagation algorithm, and it has high predicting precision, the average percentage error is not more tan 2 %, the largest average absolute error is 1.87 ¥MWh. This algorithm can be used efficaciously for short term electric price forecast of power market.
作者 李娜 李郁侠
机构地区 西安理工大学
出处 《水力发电学报》 EI CSCD 北大核心 2009年第3期22-25,21,共5页 Journal of Hydroelectric Engineering
基金 陕西省教育厅专项科研计划项目(05JK266)
关键词 电气工程 电价预测 粒子群算法 BP神经网络 电力市场 electric engineering electric price forecast partiele swarm algorithm BP network electric powermarket
  • 相关文献

参考文献5

二级参考文献33

共引文献419

同被引文献28

  • 1杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2001,17(1):25-29. 被引量:74
  • 2邵震宇,黄成军,肖燕,赵亚奎,江秀臣.用PSO算法训练神经网络抑制发电机局放随机脉冲干扰[J].电力系统自动化,2005,29(11):49-52. 被引量:12
  • 3顾永明,张国华.面板堆石坝演化人工神经网络反演分析模型研究[J].西北水电,2007(2):66-69. 被引量:6
  • 4刑文训 谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.193-246.
  • 5DEEPAK M, ABHISHEK Y, SUDIPTA R. Levenberg-marquardt learning algorithm for integrate and fire neuron model[C]// Neural Information Processing-letters and Reviews. [S.1.].. [s.n.], 2005: 41 - 50.
  • 6EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: [s.n.], 1995.- 39 - 43.
  • 7KENNEDY J. The particle swarm: social adaptation of knowledge[C]// IEEE International Conference on Evolutionary Computation. Indianapolis: [s.n.], 1997: 303-308.
  • 8SHI Y, EBERHART R C. A modified particle swarm optimizer[C]// Proceedings of IEEE Intemational Conference on Evolutionary Computation. [S.1.]: [s.n.], 1998, 69- 73.
  • 9SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation. [S.1.]: [s.n.], 1999:1 945 - 1 950.
  • 10CUARESMA J C,HLOUSKOVA J, KOSSMEIER S,et al. Fore- casting Electricity Spot-prices Using Linear Univariate Time- series Models[J]. Applied Energy,2004,77(1) : 87-106.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部