期刊文献+

模拟弹体内IMU输出与卡尔曼滤波研究 被引量:1

Simulation of IMU Output Signal in Missile and Research on Kalman Filter
下载PDF
导出
摘要 IMU在地面系下的投影,通过转换矩阵转换为弹体系下的输出,再考虑到惯性器件常值误差、白噪声与随机误差的影响,即可模拟IMU在弹体内的输出。当地面系下的投影为静态或动态时,可分别模拟弹体内IMU在初始对准时的输出和在飞行过程中的输出。对该信号进行卡尔曼滤波,根据信号的特性调整滤波参数,进而提高滤波效果。这将有助于解决卡尔曼滤波器在实际应用中估计误差增大和滤波发散等问题。 IMU signal which is in ground coordinate system transforms to output in missile coordinate system through transformation matrix, and considering the constant error of inertial component, white noise, and random error, the IMU signal in missile can be simulated. When the ground signal is static or dynamic, the simulative signal is the IMU signal of initial alignment or the signal when flying in missile. The simulative signal is processed by Kalman filter. Adjusting filter parameters based on characteristics of the simulative signal so as to improve filter effect. It is useful to solve accretion of estimation error and filter divergence in practice.
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第3期13-16,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 坐标转换 测量误差 模拟IMU输出 卡尔曼滤波 coordinate transformation, measurement error IMU output simulation Kalman filter
  • 相关文献

参考文献2

二级参考文献10

  • 1Mohinder S G,Henderson,Randy S M. Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems[J]. IEEE Transaction on Automatic Control, 1991,36(1):4-13.
  • 2Special Issue on Application of Kalman Filter[J],IEEE Transaction on Automatic Control, 1983,28(5).
  • 3Ignagni M B. Separated Bias Kalman Estimator with Bias State Noise [J]. IEEE Transaction on Automatic Control, 1990,35 (3): 338-341.
  • 4Chen Guanrong,Charles K C. A Modified Adaptive Kalman Filter for Real Time Application[J]. IEEE Transaction on Aerospace and Electronic System, 1991,27 (1): 149-153.
  • 5Tae Y U,Jang G L,Seongtake Park,et al. Noise Covariances Estimation for Systems with Bias States [J]. IEEE Transaction on Aerospace and Electronic System, 2000,36 (1): 226-232.
  • 6Zhu Yunmin. Efficient Recursive State Estimator for Dynamic Systems without Knowledge of Noise Covariance[J]. IEEE Transaction on Aerospace and Electronic System, 1999,35 (1): 102-113.
  • 7Xia Q, Rao M, Ying Y, et al. A New State Estimation Algorithm Adaptive Fading Kalman Filter [A],Procedings of the 31st Conference on Decision and Control [C], 1992.
  • 8房建成,申功勋,万德钧,周百令.GPS/DR组合导航系统自适应扩展卡尔曼滤波模型的建立[J].控制理论与应用,1998,15(3):385-390. 被引量:27
  • 9耿延睿,崔中兴.组合导航系统卡尔曼滤波衰减因子自适应估计算法研究[J].中国惯性技术学报,2001,9(4):8-10. 被引量:20
  • 10王新龙,申功勋,何乃刚.带模型误差系统的自适应卡尔曼滤波在捷联惯导系统初始对准中的应用研究[J].中国惯性技术学报,2001,9(3):9-13. 被引量:6

共引文献10

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部