期刊文献+

插值重建的分数阶傅里叶域分析

The Analysis of Reconstruction by Interpolation in the Fractional Fourier Domain
下载PDF
导出
摘要 建立在傅里叶变换基础上的传统插值重建理论已不适用于基于分数阶傅里叶变换的SAR算法,文中对插值重建理论在分数阶傅里叶域作了进一步的分析和仿真。首先依据分数阶卷积的概念从分数阶傅里叶域的角度分析了采样信号的重建方程。其次从工程应用出发,进行了有限数目卷积核的插值重建误差分析。最后,给出了卷积核的截断归一化公式。可以发现利用分数阶卷积的插值核数目大于16即可,且需要保证移动后的样本位置不远离原卷积核的样本位置。 The conventional reconstruction theory by interpolation is based on the Fourier transform, has not fit for the SAR algorithms based on the fractional Fourier transform. In this paper, reconstruction by interpolation is analyzed and simulated in the fractional Fourier domain further. Firstly, the reconstruction formula of a sampled signal was analyzed in the fractional Fourier domain according to the fractional convolution. Secondly, as for engineering application, the error analysis of reconstruction by interpolation was made in according to finite convolution functions. Finally, the normalization formulas of intercepted convolution functions were shown. It's conchided that the proper number of samples for the fractional convolution is about 16, and the shift location should be near to the positions of those samples.
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第3期221-223,230,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国防预研基金 "泰山学者"建设工程专项基金资助
关键词 分数阶傅里叶变换 插值 信号重建 fractional Fourier transform interpolation signal reconstruction
  • 相关文献

参考文献12

  • 1L B Almeida.The fractional Fourier transform and time-frequency representations[J].IEEE Trans.Signal Processing,1994,42(11):3084-3091.
  • 2陶然,邓兵,王越.分数阶FOURIER变换在信号处理领域的研究进展[J].中国科学(E辑),2006,36(2):113-136. 被引量:80
  • 3T Erseghe,P Kraniauskas,G Cariolaro.Unified fractional Fourier transform and sampling theorem[J].IEEE Trans.Signal Processing,1999,47(12):3419-3423.
  • 4Ran Tao,Bing Deng,et al.Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain[J].IEEE Trans.Signal Processing,2008,56(1):158-171.
  • 5邓兵,陶然,杨曦.分数阶Fourier域的采样及分辨率分析[J].自然科学进展,2007,17(5):655-661. 被引量:16
  • 6陶然,张峰,王越.分数阶Fourier变换离散化的研究进展[J].中国科学(E辑),2008,38(4):481-503. 被引量:27
  • 7赵兴浩,陶然,邓兵,王越.分数阶傅里叶变换的快速计算新方法[J].电子学报,2007,35(6):1089-1093. 被引量:23
  • 8A S Amein and J J Soraghan.Azimuth fractional transform of the fractional chirp scaling algorithm(FrCSA)[J].IEEE Trans.Geoscience and Remote Sensing,2006,44(10):2871-2879.
  • 9A S Amein and J J Soraghan.Fractional chirp scaling algorithm:Mathematical model[J].IEEE Trans.Signal Processing,2007,55(8):4162-4172.
  • 10Liping du,Guangchuan su.Adaptive inverse synthetic aperture radar imaging for nonuniformly moving targets[J].IEEE Geoscience and Remote Sensing Letters,2005,2(3):247-249.

二级参考文献25

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部