期刊文献+

β-环糊精包合阿德福韦的理论研究 被引量:4

Theoretical studies on the inclusion complexes of PMEA and β-cyclodextrin
原文传递
导出
摘要 目的采用计算机辅助模拟设计对环糊精的包合作用进行理论研究,从分子水平对β-环糊精(β-CD)包合阿德福韦(PMEA)的可行性进行研究和探讨。方法受体β-CD结构取自剑桥晶体结构库中"HEGXUM"的晶体复合物,不同价态的配体PMEA在OPLAS2005分子力场下经过优化后,以对接方法研究包合作用。结果在包合过程中,PMEA容易被β-CD包合,包合后容易形成PMEA-β-CD包合物;包合过程中以β-CD:PMEA=2:1包合较β-CD:PMEA=1:1包合更容易形成包合物;分子间的范德华作用能起主要作用,而静电作用能起次要作用;配体PMEA所带的价电荷数也会对包合作用产生影响,PMEA在中性或带正电时可能有利于β-CD单分子包合,带负电荷有利于双分子β-CD包合。结论β-CD与PMEA容易形成PMEA-β-CD包合物,包合的模式受β-CD摩尔比例和PMEA的带电状态的影响。 Objective Using the method of assistant simulation deesign by computer to investigate the rules of forming inclusion complexes between cyclodextrin (β-CD) and adefovir (PMEA) from the molecu- lar level. Methods The structures of β-CD were from the crystalline structure (HEGXUM). The struc-tures of PMEA with different charges were optimized under OPLAS2005 force field. The inclusion complexes were simulated by docking method of Glide in Schrodinger software package. Results PMEA and β-CD easy to form the PMEA-β-CD inclusion complex. The 2 parts of β-CD are more easily to form the inclusion complex with than PMEA than one part. Among the total energy, Van der Waals energy play a major role compared with the electrostatic interaction. The different charges states can change the models of inclusion. The positive PMEA favors mono β-CD, and the negative PMEA prefers β-CD dimmer. Conclusion β-CD and PMEA can easy to form the inclusion complex. The portion of β-CD and the charges states of PMEA have effects on the models of inclusion complexes.
出处 《现代药物与临床》 CAS 2009年第3期173-176,共4页 Drugs & Clinic
基金 天津市支撑项目(09ZCKFSH01200)
关键词 Β-环糊精 阿德福韦 PMEA 包合作用 理论研究 β-cyelodextrin, adefovir, inclusion, theoretical research
  • 相关文献

参考文献8

  • 1徐为人,任晓文,马晋,等.一种含活性成分阿德福韦或其盐的固体分散物及其制备方法[P].中国专利:ZL200310107200.9,20080430.
  • 2任晓文,王玉丽,张士俊,刘巍,刘冰妮,汤立达,徐为人.β-环糊精对黄酮类结构包合作用的理论研究[J].中草药,2008,39(9):1308-1312. 被引量:14
  • 3王博,任晓文,徐为人,王玮,汤立达.羟丙基-β-环糊精对苯基丙烯酸类结构包合作用的理论研究[J].中草药,2009,40(4):558-562. 被引量:2
  • 4于艳敏.环糊精包结作用的分子模拟研究[D].合肥:中国科学技术大学,2007.
  • 5Giuseppina R, Fabio G. Hydration and flexibility of α-, β-, γ- and δ-cyclodextrin: A molecular dynamics study [J]. Chemical Physics, 2007, 333(2/3): 128-134.
  • 6Weinzinger P, Weiss-Greiler P, Snor W, et al. Molecular dy namics simulations and quantum chemical calculations on β-cyclodextrin spironolactone complex [J]. J Inclusion Phenom Macrocyclic Chem, 2007, 57(1/4): 29-33.
  • 7Rudyak V, Yu A, Avakyan V G, et al. Structural features of cyclodextrin inclusion complexes: Correlation of binding ener gies with thermochemical data [J]. Russ J Phys Chem, 2005, 79(Suppl 1) : S28-S32.
  • 8Chikara I, Yasuji L. Molecular simulation on interaction of polychlorodibenzodioxin and cyelodextrins [J]. Yamaguchi-ken ritsu Daigaku Seikatsu Kagakubu Kenkyu Hokoku, 2005, 31:41-48.

二级参考文献15

共引文献15

同被引文献39

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部