期刊文献+

AL6XN超级奥氏体钢的高温蠕变及疲劳行为研究 被引量:3

High-Temperature Creep and Fatigue Behaviors of AL6XN Super Austenite Steel
下载PDF
导出
摘要 研究了AL6XN超级奥氏体钢在650-750℃和120-220 MPa应力水平下的高温蠕变特性,以及300和600℃不同恒应变幅值条件下的疲劳特性。结果表明,AL6XN具有优越的高温蠕变抗力,其蠕变激活能Q为327 kJ/mol,蠕变应力指数为5.23。结合变形微结构观察结果表明,AL6XN的蠕变机制为位错攀移和滑移机制。在一定应变量下,AL6XN在600℃时疲劳试验的应力水平高于300℃的应力水平,同时随着应变量的增加和温度的升高,其疲劳寿命显著降低;600℃疲劳试验后仅形成位错缠结,疲劳裂纹扩展断口存在典型的疲劳辉纹,无明显二次裂纹。以上结果表明,AL6XN疲劳裂纹扩展行为与其动态应变时效有关。 High-temperature creep and fatigue behaviors of AL6XN super austenite steel were studied at 650-750 ℃ and 120-220 MPa, and 300 ℃ and 600 ℃ with different strain amplitudes, respectively. The results show that the values of stress exponent and Q for high-temperature creep are estimated to be 5.23 and 327 kJ/mol, respectively. Based on TEM observations, the mechanism of creep was considered as the dislocation climb and glide mode. The stress level of AL6XN steel in the fatigue-test at 600 ℃ is larger than that at 300 ℃, and the cycling life decreases obviously with increasing temperature and strain amplitude. TEM observations revealed dislocation tangles, rather than dislocation cells in the steel after the fatigue-test at 600 ℃, and the typical stria- tions on the fracture surfaces without the secondary cracks are observed by SEM, which is related to the dynamic strain aging occurred in the AL6XN austenitic steel.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2009年第6期509-513,共5页 Atomic Energy Science and Technology
基金 国家重点基础研究发展计划资助项目(2007CB209803)
关键词 AL6XN超级奥氏体钢 力学性能 蠕变 疲劳 AL6XN austenitic steel mechanical properties creep fatigue
  • 相关文献

参考文献9

  • 1程旭,刘晓晶.超临界水冷堆国内外研发现状与趋势[J].原子能科学技术,2008,42(2):167-172. 被引量:45
  • 2李满昌,王明利.超临界水冷堆开发现状与前景展望[J].核动力工程,2006,27(2):1-4. 被引量:19
  • 3EHRLICH K, KONYS J, HEIKINHEIMO L. Materials for high performance light water reactors[J]. J Nucl Mater, 2004, 327: 140-147.
  • 4RIETH M. A comprising steady-state creep model for the austenitic AISI 316L(N) steel [J]. J Nucl Mater, 2007, 367-370: 915-919.
  • 5HONG S G, LEE K O, LEE S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. Int J Fatigue, 2005, 27: 1 420-1 424.
  • 6STAUFFER A C, KOSS D A, MeKIRGAN J B. Microstruetural banding and failure of a stainless steel[J]. Metall Mater Trans A, 2004, 35(4) : 1 317-1 324.
  • 7ABED F H, VOYJADJIS G Z. Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals [J]. Int J Plast, 2005, 21:1 618-1 639.
  • 8METROVICH B, FISHER J W, YEN B T, et al. Fatigue strength of welded AL-6XN super austenitic stainless steel[J]. Int J Fatigue, 2003, 25:1 309-1 315.
  • 9KALNAUS S, JIANG Yanyao. Fatigue of AL6XN stainless steel[J]. J Eng Mater Technol, 2008, 130(3): 031013-1-12.

二级参考文献11

  • 1OKAY. Review of high temperature water and steam cooled reactor concepts [C]// Proceeding of SCR-2000. Tokyo: [s. n. ], 2000:37-57.
  • 2YAMAJI A, KAMEI K, OKA Y, et al. Improved core design of the high temperature supercritical-pressure light water reactor[J]. Ann Nucl Energy, 2005(3): 651-670.
  • 3BAE Y Y, JOO H K, JANG J S, et al. Research of a supercritical pressure water cooled reactor in Korea[C]// ICAPP'04. Pittsburgh: [s. n. ], 2004:4 247.
  • 4STARFLINGER J, AKSAN N, BITTERMANN D, et al. 2003 roadmap for supercritical-watercooled reactor R&D in Europe [C]// GLOBAL2003. New Orleans: [s. n.], 2003:1 137- 1 142.
  • 5DUFFEY R, PIORO I, KHARTABIL H. Supercritical water-cooled pressure channel nuclear reactors: Review and status [C]// GLOBAL 2005. Tsukuba, Japan: [s. n. ], 2005: 20.
  • 6MODRO S M. Supercritical water cooled reactor research and development in the US [C]//ICAPP '05. Seoul: [s.n.], 2005:5 694.
  • 7CHENG X, SCHULENBERG T, KOSHIZUKA S. Thermal-hydraulic analysis of supercritical pressure light water reactors [C]// ICAPP'02. Hollywood: [s.n.], 2002:1 015.
  • 8CHENG X, SCHULENBERG T, BITTERMANN D. Design analysis of core assemblies for supercritical pressure conditions[J]. Nuclear Engineering and Design, 2003, 223:279-294.
  • 9EHRLICH K, KONYS J, HEIHINHEIMO L. Materials for high performance light water reactors[J]. Journal of Nuclear Materials, 2004(3): 127-140.
  • 10CHENG X, KUANG B, YANG Y H. Dynamic behavior and flow stability of supercritical water cooled systems[C]//ICAPP'06. Nevada, USA:[s. n.], 2006: 6 227.

共引文献59

同被引文献33

  • 1王静,伏思静,丁义超.原位合成TiC/Fe基复合材料的组织结构和磨损性能[J].四川大学学报(工程科学版),2008,40(5):111-115. 被引量:11
  • 2陈艺锋,彭长宏,唐谟堂.锌蒸气的氧化行为与氧化锌的结晶形貌[J].高等学校化学学报,2005,26(2):213-217. 被引量:8
  • 3郭伟国.4种新型舰艇钢的塑性流变应力及其本构模型[J].金属学报,2006,42(5):463-468. 被引量:15
  • 4Rapp R A. Hot corrosion of materials: a fluxing mechanism[J]. Corrosion Science, 2002,44 (2) : 209-- 221.
  • 5Uusitalo M A, Vuoristo P M J, Mantyla T A. High temperature corrosion of coatings and boiler steels be- low chlorine-containing salt deposits [J]. Corrosion Science,2004,46(9) :1311-1331.
  • 6Gonzalez J G, Haro S, Martinez-Villafane A, et al. Corrosion performance of heat resistant alloys in Naz SO4- V2O5 molten salts[J]. Materials Science& Engineering, 2006(435/436) :258--265.
  • 7Zhu B, Lindbergh G. Corrosion behaviour of high- chromium ferritic steels in molten carbonate in cathode environment[J]. Electrochimica Acta, 9.001, 46 (17) : 2593--2604.
  • 8Cho S H,Hur J M, Seo C S, et al. Hot corrosion behavior of Ni-base alloys in a molten salt under an oxidi- zing atmosphere [J ]. Journal of Alloys and Compounds, 2009,468 ( 1/2) : 263-- 269.
  • 9Cho S H, Hur J M, Seo C S, et al. High temperature corrosion of superalloys in a molten salt under an oxi- dizing atmosphere[J]. Journal of Alloys and Compounds, 2008,452(1) :11--15.
  • 10Frangini S, Loreti S. The role of temperature on the corrosion and passivation of type 310S steel in eutectie (Li+K) carbonate melt[J]. Journal of power sources, 2006,160(2) : 800--804.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部