期刊文献+

基于ECoG的运动想象脑-机接口分类方法 被引量:3

CLASSIFICATION OF BRAIN-COMPUTER INTERFACE OF MOTOR IMAGERY BASED ON ECoG
下载PDF
导出
摘要 脑—机接口BCI(Brain-Computer Interface)技术是近年来国际上的研究热点之一,它通常利用脑电EEG(electroencephalo-gram)来实现无动作的人机交互,运动想象是其中一种重要的BCI实验范式。有关研究表明,脑皮层电位ECoG(electrocorticogram)具有更好的信噪比与频带特性。研究基于ECoG的运动想象BCI系统,针对ECoG信号的特点,改进了信号处理方法,提取数据的公共空间模式CSP(Common Spatial Pattern)特征,并利用支持向量机SVM(Support Vector Machines)进行分类器设计,提高了运动意向的识别正确率。用相应方法处理2005年脑-机接口竞赛中的一组实验数据,正确率达到92%,相比于当时参赛时所用的方法提高了6%。实验还发现,支持向量机在克服"维数灾难"和"过拟合"方面具有更好的鲁棒性。 Brain-computer interface (BCI) is one of the research hot point in the world recently. By using electroencephalogram, BC1 establishes no-work interaction between human and computer,in which motor imagery is an important experimental paradigm. Related studies indicate that Electroeortieogram (ECoG) has higher signal noise ratio (SNR) and broader bandwidth. BCI system of motor imagery (MI) based on ECoG is studied in this paper. Particular signal processing techniques are improved which exploits the character of ECoG information. By extracting the common spatial pattern (CSP) character of data and using support vector machines (SVM) to design the classifier, the recognition accuracy of MI is improved. Processing the dataset of Motor imagery from BCI Competition III in year 2005 by means of the above approaches, the result on testing set revealed an accuracy of 92% for classification, which was 6% higher than what we had submitted to the competition. Moreover, the result of experiment found that the SVM has better robustness in overcoming "curse of dimensionality" and "over-fitting".
出处 《计算机应用与软件》 CSCD 2009年第6期21-23,56,共4页 Computer Applications and Software
基金 国家自然科学基金(60575044)
关键词 脑—机接口 脑皮层电位 运动想象 公共空间模式 支持向量机 Brain-compute, interface Electrocorticogram Motor imagery Common spatial pattern Support vector machines
  • 相关文献

参考文献10

  • 1Schalk G,Dennis J,Thilo H,et al.BCI2000:A general-purpose brain-computer interface(BCI) system[J].IEEE Trans.Rehab.Eng.,2004,51(6):1034-1043.
  • 2Wilson J A,Felton E A,Garell P C,et al.ECoG factors underlying multimodal control of a brain-computer interface[J].IEEE Trans.Rehab.Eng.2006,14(2):246-250.
  • 3Pfurtscheller G,Lopes da Silva FH.Event-related EEG/MEG synchronization and desynchronization:basic principles[J].Clin.Neurophysiol.,1999,110:1842.
  • 4Blankertz B,Müller K R,krusienski D J,et al.BCI Competition III website[OL].http://ida.first.fraunhofer.de/projects/bci/competition_iii/.
  • 5Lemm S,Blankkertz B,Curio G,et al.Spatio-spectral filters for improved classification of single trial EEG[J].IEEE Trans.Biomed.Eng.,2005,52(9):1541-1548.
  • 6Qin L,Kamousi B,Liu Z M,et al.Classification of motor imagery tasks by means of time-frequency-spatial analysis for brain-computer interface applications[C].Virginia:Proc.IEEE EMBS Conference on Neural Engineering,2005,3:16-19.
  • 7Dornhege G,Blankertz B,Curio G,et al.Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass Paradigms[J].IEEE Trans.Biomed.Eng.,2004,51(6):993-1002.
  • 8Liu Y,Zhou Z T,Hu D W,et al.T-weighted approach for neural information processing in P300 based brain-computer interface[C].Zhao M.S.,Shi Z.Z..ICNN&B,Beijing:CNNC,IEEE CIS,2005,3:1535-1539.
  • 9Chang C C,Lin C J.LIBSVM:A library for support vector machines[OL].http://www.csie.ntu.edu.tw/verb-cjlin/libsvm,2006.
  • 10Leuthardt E C,schalk G,Wolpaw J R,et al.A brain-computer interface using electrocorticographic signals in humans[J].J.Neural Eng.,2004,1:63-71.

同被引文献38

  • 1万柏坤,綦宏志,赵丽,陈滨津,毕卡诗,陈骞.基于脑电Alpha波的脑-机接口控制实验[J].天津大学学报,2006,39(8):978-984. 被引量:18
  • 2LEUTHARDT E, SCHALK G, WOLPAW J, et al. A brain-computer interface using electrocorticographic signals in humans[J]. Neural Eng, 2004,1:63-71.
  • 3LAL T N, HINTERBERGER T, WIDMAN G, et al. Methods towards invasive human brain computer interfaces [J ]. Advances in Neural Information Processing System (NIPS), 3)05,17:737-744.
  • 4GRAINMANN B, HUGGINS J, LEVINE S, et al. Towards a direct brain interface based on human subdural recordings and wavelet packet analysis [ J ]. IEEE Trans. Biomed. Eng, 2004,51:954-962.
  • 5SCHALK G, MILLER K J, ANDERSON N R, et al. Two- dimensional movement control using electrocurticographic signals in humans [ J ]. Journal of Neural Engineering, 2008,5 : 75 -84.
  • 6PISTOHL T, BALL T, SCHULZE-BONHAGE A, et al. Prediction of arm movement trajectories from ECoG-reeordings in humans [ J]. Journal of Neuroseienee Methods, 2008,167 : 105-114.
  • 7WEI,Q G, MENG F, WANG Y J, et al. Feature combination for classifying single-trial ECoG during motor imagery of different sessions[J]. Progress in Natural Science, ~007 ,17 :851- 858.
  • 8SHENOY P, MILLER K J, OJEMANN J G, et al. Generalized features for electrocorticographic BCIs [ J]. IEEE Trans. Biomed. Eng, 2008, 55: 273-280.
  • 9GUYON 1, WESTON J, BARNHILL S. Gene selection for cancer classification using support vector machines [J]. Machine Learning, 2002, 46:389-422.
  • 10PFURTSCHELI,ER G, LOPES DA SIINA F H. Event- related EEG/MEG synchronization and desynchronization: basic principles [ J ]. Clinical Neurophysiology, 1999,110( 11 ) :1842-1857.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部