N = 2 SCVA's FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY
N = 2 SCVA's FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY
摘要
We construct an N = 2 superconformal vertex algebra(SCVA) from a generalized Calabi-Yau manifold and compute the BRST cohomology of its associated topological vertex algebras. We show that the BRST cohomology coincides with the generalized Dobeault cohomology. We show that the two topological vertex algebras constructed from the N = 2 SCVA by A and B twist respectively are mirror pairs.
We construct an N = 2 superconformal vertex algebra(SCVA) from a generalized Calabi-Yau manifold and compute the BRST cohomology of its associated topological vertex algebras. We show that the BRST cohomology coincides with the generalized Dobeault cohomology. We show that the two topological vertex algebras constructed from the N = 2 SCVA by A and B twist respectively are mirror pairs.
基金
supported in part by the NSFC (10771203)
参考文献16
-
1Ben-Bassat O. Mirror symmetry and generalized complex manifolds, math.AG/0405303.
-
2Bott R, Tu L. Differential forms in algebraic topology//Graduates Texts in Mathematics, 82. New York, Berlin: Springer-Verlag, 1982.
-
3Chiantese S, Gmeiner F, Jeschek C. Mirror symmetry for topological sigma models with generalzed Kahler geometry, hep-th/0408169.
-
4Eguchi T, Yang S -K. N = 2 superconformal models as topological field theories. Modern Phys Lett A, 1990, 5(21): 1639-1701.
-
5Gualtieri M. Generalized complex geometry [D]. Oxford: Oxford University, 2003. math.DG/0401221.
-
6Hitchin N. Generalized Calabi-Yau manifolds, math.DO/0209099.
-
7Kac V G. Vertex Algebra for Beginners. University Lecture Series, 10. 2nd edition. Providence, RI: American Mathematical Society, 1938.
-
8Kapustin A, Li Y. Topological sigma-models with H-flux and twisted generalized complex manifolds. hep-th/0407249.
-
9Kapustin A, Li Y. Open String BRST cohomology for generalized complex branes, hep-th/0501071.
-
10Malikov F, Schechtman V, Vaintrob A. Chiral de Rham complex. Comm Math Phys, 1999, 204(2): 439-473. math.AG/9803041.
-
1廖靖宇.微分流形P^n中子流形的对称性[J].许昌师专学报,1995,14(2):4-9.
-
2王爱芬,盖志涛.磁物理量与镜面对称[J].抚顺石油学院学报,1998,18(1):79-80.
-
3胡芳举.巧证线面垂直的判定定理[J].数学通讯(教师阅读),2007,21(5):20-20. 被引量:2
-
4华兴恒.平面镜只能成虚像吗[J].物理教师(初中版),2009(10):4-5.
-
5程值军,崔嵩,张璐.关于三分Cantor集的结构的一些新结论[J].榆林学院学报,2009,19(4):23-25.
-
6黄安甲.静电场中的镜象对称[J].钦州学刊,1997,12(4):65-68.
-
7舒孝翠.尝试先行 关注体验——《镜面对称》教学设计[J].信息教研周刊,2010(15):54-54.
-
8刘碧,魏冬华.叠加法在剪力图和弯矩图中的应用[J].咸宁学院学报,2002,22(3):63-65.
-
9袁珍艳.关于Sober拓扑的一个反例[J].伊犁师范学院学报(自然科学版),2009,3(3):6-8.
-
10黄梦桥,李庆国.群的一个Domain结构[J].模糊系统与数学,2008,22(1):18-25. 被引量:6