期刊文献+

N = 2 SCVA's FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY

N = 2 SCVA's FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY
下载PDF
导出
摘要 We construct an N = 2 superconformal vertex algebra(SCVA) from a generalized Calabi-Yau manifold and compute the BRST cohomology of its associated topological vertex algebras. We show that the BRST cohomology coincides with the generalized Dobeault cohomology. We show that the two topological vertex algebras constructed from the N = 2 SCVA by A and B twist respectively are mirror pairs. We construct an N = 2 superconformal vertex algebra(SCVA) from a generalized Calabi-Yau manifold and compute the BRST cohomology of its associated topological vertex algebras. We show that the BRST cohomology coincides with the generalized Dobeault cohomology. We show that the two topological vertex algebras constructed from the N = 2 SCVA by A and B twist respectively are mirror pairs.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2009年第4期961-972,共12页 数学物理学报(B辑英文版)
基金 supported in part by the NSFC (10771203)
关键词 superconformal vertex algebra generalized Calabi-Yau mirror symmetry superconformal vertex algebra generalized Calabi-Yau mirror symmetry
  • 相关文献

参考文献16

  • 1Ben-Bassat O. Mirror symmetry and generalized complex manifolds, math.AG/0405303.
  • 2Bott R, Tu L. Differential forms in algebraic topology//Graduates Texts in Mathematics, 82. New York, Berlin: Springer-Verlag, 1982.
  • 3Chiantese S, Gmeiner F, Jeschek C. Mirror symmetry for topological sigma models with generalzed Kahler geometry, hep-th/0408169.
  • 4Eguchi T, Yang S -K. N = 2 superconformal models as topological field theories. Modern Phys Lett A, 1990, 5(21): 1639-1701.
  • 5Gualtieri M. Generalized complex geometry [D]. Oxford: Oxford University, 2003. math.DG/0401221.
  • 6Hitchin N. Generalized Calabi-Yau manifolds, math.DO/0209099.
  • 7Kac V G. Vertex Algebra for Beginners. University Lecture Series, 10. 2nd edition. Providence, RI: American Mathematical Society, 1938.
  • 8Kapustin A, Li Y. Topological sigma-models with H-flux and twisted generalized complex manifolds. hep-th/0407249.
  • 9Kapustin A, Li Y. Open String BRST cohomology for generalized complex branes, hep-th/0501071.
  • 10Malikov F, Schechtman V, Vaintrob A. Chiral de Rham complex. Comm Math Phys, 1999, 204(2): 439-473. math.AG/9803041.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部