期刊文献+

大型铝电解槽母线配置的数值仿真与优化 被引量:8

Numerical simulation and optimization of busbar configuration in large aluminum electrolysis cell
下载PDF
导出
摘要 通过运用商业软件ANSYS与自编程序相结合的方法,建立铝电解槽母线配置的参数化仿真计算模型,并基于磁流体稳定性评估准则采用遗传算法研究500kA铝电解槽的母线配置及其优化。研究结果表明,自适应优化后的母线在槽底为非对称强补偿母线配置方式,阴极母线电流的配置在大面A侧为6:4:2:0:5:7,在大面B侧为4:5:8:4:3,具有较好的物理场分布特征与磁流体稳定性,铝液中部垂直磁场极值为38.7Gs,铝液层的平均流速为0.148m/s。通过运用现代遗传优化技术能够实现多物理场下的目标优化,实现对母线配置参数组合的自动优化选择以及多物理场的优化配置。 Using commercial package ANSYS and custom code, the parametrical mathematic model of busbar configuration in the 500 kA aluminum electrolysis cell was proposed, and the busbar configuration along with the physical fields was studied and optimized based on the MHD (magnetohydrodynamic) stability criteria with genetic algorithm. The results show that the cell with optimized asymmetrical busbar configuration has better performance in the distribution of physical fields and MHD stability; the current carried by the cathode busbars along A side is at ratio of 6:4:2:0:5:7, while along B side is at ratio of 4:5:8:4:3; the maximum of B2 in the mid metal is 38.7 Gs and the average velocity of metal is 0.148 m/s. The approach combined with genetic algorithm and stability evaluation criterion can effectively achieve an optimal design of busbar configuration and multi-physical fields.
作者 李茂 周孑民
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第3期562-567,共6页 Journal of Central South University:Science and Technology
基金 教育部博士点基金资助项目(20010533009)
关键词 铝电解槽 磁流体稳定性 母线配置 数值仿真 aluminum electrolysis cell magnetohydrodynamic stability busbar configuration numerical simulation
  • 相关文献

参考文献19

  • 1Gusev A, Kriuokovsky V, Krylov L, et al. Busbar optimization of high-current reduction cells[C]//Light Metals. Warrendale, TMS, 2004: 467-472.
  • 2Grjotheim K, Kvande H. Understanding the Hall-Heroult process for production of aluminum[M]. Dusseldorf: Aluminum-Verlag, 1986.
  • 3Potocnik V. Principles of MHD design of aluminum electrolysis cells[C]//Light Metals. Warrendale, TMS, 1991: 1187-1193.
  • 4Dupuis M, Bojarevics V. Busbar sizing modeling tools: Comparing an ANSYS based 3D model with the versatile 1D model part of MHD-Valdis[C]//Light Metals. Warrendale, TMS, 2006: 341-346.
  • 5Urata N. Magnetics and metal pad instability[C]//Light Metals. Warrendale, TMS, 1985: 581-591.
  • 6Urata N. Wave mode coupling and instability in the internal wave in aluminum reduction cells[C]//Light Metals. Warrendale, TMS, 2005: 455-460.
  • 7Segatz M, Droste C. Analysis of magnetohydrodynamic instabilities in aluminum reduction cells[C]//Light Metals. Warrendale, TMS, 1994: 313-322.
  • 8Vogelsang D, Eick I, Segatz M, et al. From 110 to 175 kA: Retrofit of VAW Rheinwerk. Part I: Modernization concept[C]//Light Metals. Warrendale, TMS, 1997: 233-238.
  • 9Vogelsang D, Segatz M, Droste C, et al. Development of a 300-KA reduction cell: application of simulation tools for the conceptual design[C]//Light Metals. Warrendale, TMS, 1994: 245-251.
  • 10Droste C, Eick I, Segatz M. Process modeling as a key factor in AP14 retrofit at Aluminij d.d. Mostar[C]//Light Metals. Warrendale, TMS, 2003: 367-372.

二级参考文献41

共引文献31

同被引文献45

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部