期刊文献+

有指向性的视觉注意计算机模型 被引量:2

A Computer Model of Directional Visual Attention
下载PDF
导出
摘要 注意把有限的处理资源优先分配给那些需要精细加工的信息,能提高视觉信息加工中的检测能力和响应速度.基于生物视觉系统的生理结构特点,建立了模拟生物视觉注意系统的有指向性的视觉注意计算机模型.模型首先模拟生物视网膜的成像机制,将视场图像转化为视网膜图像;然后将最大梯度边缘检测和c-均值聚类等方法相结合,对视网膜图像中的目标进行编码,分别提取每个目标的颜色、中心以及边缘点集合等基本信息;最后用知识库中指向性目标的特征来指导注意焦点的转移.实验结果表明,利用此模型能较好地实现注意焦点的转移. Attention assigns the limited processing resources to the information which needs processing finely. This feature can enhance the detection ability and response speed of the visual information processing. In the past few years, the allocation mechanism of attention has received a lot of attention and many approaches have been developed. The authors propose a computer model of directional visual attention, which can simulate biological visual attention systems based on their physiological structure. The proposed model has three layers: visual image inputting layer, object encoding layer and control layer. Visual image inputting layer transforms visual image into retina image through imaging mechanisms of biological retina and adiusts the radius of fovea to cover the attention object currently. Object encoding layer encodes objects in retina image by edge detection with maximum gradient and c-means algorithm firstly, then extracts the fundamental information about each object including color, central, set of edge pixels, etc. Control layer transfers the attention focus according to the characteristics of directional objects in knowledge base. In the control layer the space information is used, the object which is nearest from the focus of attention currently in space position has high priority in processing. Experimental results indicate that the attention focus can be transferred to directional objects with the proposed model.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第7期1192-1197,共6页 Journal of Computer Research and Development
基金 高等学校博士学科点专项科研基金项目(20050183032) 吉林省教育厅科学基金项目(2004150)~~
关键词 信息处理 视觉注意计算机模型 k-系数法 注意 边缘检测 information processing computer model of visual attention k-coefficient method attention edge detection
  • 相关文献

参考文献9

  • 1Harris L R,Jenkin M.Vision and Attention[M].Berlin:Springer.2001:1-14.
  • 2Fink G R,Dolan R Jo Halligan P W,et al.Space-based and object-based visual attention:Shared and specific neural domains[J].Brain,1997,120(11):2013-2028.
  • 3Rybak I A,Gusakova V I,et al.A model of attention-guided visual perception and recognition[J].Vision Research,1998,38(15/16):2387-2400.
  • 4hti L,Koch C.Computational modeling of visual attention[J].Nature Reviews Neuroscience,2001,2(3):194-203.
  • 5Treisman A.Features and objects:The fourteenth Bartlett Memorial Lecture[J].Quarterly Journal of Experimental Psychology,1988,40(2):201-237.
  • 6田媚,罗四维,黄雅平,赵嘉莉.基于局部复杂度和初级视觉特征的自底向上注意信息提取算法[J].计算机研究与发展,2008,45(10):1739-1746. 被引量:6
  • 7邹琪,罗四维,郑宇.利用多尺度分析和编组的基于目标的注意计算模型[J].电子学报,2006,34(3):559-562. 被引量:5
  • 8Sun Y,Fisher R.Object-based visual attention f or computervision[J].Artificial Intelligence,2003,146(1):77-123.
  • 9Deng Y,Manjunath B S.Unsupervised segmentation of color-texture regions in images and video[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23 (8):800-810.

二级参考文献25

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2邹琪,罗四维,郑宇.利用多尺度分析和编组的基于目标的注意计算模型[J].电子学报,2006,34(3):559-562. 被引量:5
  • 3田媚,罗四维,齐英剑,廖灵芝.基于视觉系统“What”和“Where”通路的图像显著区域检测[J].模式识别与人工智能,2006,19(2):155-160. 被引量:4
  • 4Chen L,Zhang S,Srinivasan M V.Global perception in small brains:Topological pattern recognition in honey bees[J].Proc of the American National Academy of Sciences,2003,100 (11):6884-6889.
  • 5Palmer S E.Vision Science:Photons to Phenomenology[M].London:The MIT Press,1992.254-285.
  • 6Rybak I A,Gusakova V I,et al.A model of attentionguided visual perception and recognition[J].Vision Research,1998,38:2387-2400.
  • 7Itti L,Koch C.Computational modeling of visual attention[J].Nature Reviews Neuroscience,2001,2 (3):194-203.
  • 8Opie J.Gestalt theories of cognitive representation and processing[J].Psycoloquy,1999,10 (021).
  • 9Sun Y,Fisher R.Object-based visual attention for computer vision[J].Artificial Intelligence,2003,146 (1):77-123.
  • 10Deng Y,Manjunath B.Unsupervised segmentation of color-texture regions in images and video[J].IEEE Trans Pattern Analysis and Machine Intelligence,2001,23(8):800-810.

共引文献8

同被引文献28

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2曾智勇,张学军,崔江涛,周利华.基于显著兴趣点颜色及空间分布的图像检索新方法[J].光子学报,2006,35(2):308-311. 被引量:21
  • 3Yang Chen-Kuei,Tsai Wen-Hsiang.Reduction of color space di- mensionality by moment preserving thresholding and its applica- tion for edge detection in color images[J].Pattem Recognition Let- ters, 1996,17(5) :481-490.
  • 4Ohlander R,Price K,Reddy D R.Pictttre segmentation using a recursive region splitting method[J].Computer Graphics and Im- age Processing, 1978,8(3) :313-333.
  • 5Zahid N, Limouri M, Essaid A.A new cluster-validity for fuzzy clustering[J].Pattem Recognition, 1999,32(7) : 1089-1097.
  • 6Tremeau A, Borel N.A region growing and merging algorithm to color segmentation[J].Pattem Recognition, 1997,30( 7 ) : 1191 - 1203.
  • 7Fan J,Aref W G,Hacid M S,et al.An improved automatic iso- tropic color edge detection technique[J].Pattern Recognition Let- ters, 2001,22(13) : 1419-1429.
  • 8Ong S H,Yeo N C,Lee K H,et al.Segrnentation of color imag- es using a two-stage self-organizing network[J].Image and Vision Computing, 2002,20 (4) : 279-289.
  • 9Gopalakrishnan V,Yiqun H U,Rajan D.Salient region detection by modeling distributions of color and orientation[J].IEEE Trans- actions on Multimedia, 2009,11 ( 5 ) : 892-905.
  • 10Itti L, Koch C, Niebur E.A model of saliency-based visual at- tention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20( 11 ): 1254-1259.

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部