期刊文献+

有限格上具有年龄结构生物模型的动力学行为

STAGE-STRUCTURED POPULATION MODEL ON AN ISOLATED FINITE LATTICE
下载PDF
导出
摘要 研究有限格上的单种群生物模型,将种群的生活环境划分为有限斑块,每个斑块之间通过种群的扩散联系起来.通过对种群的出生函数和以种群的出生率和死亡率为元素的矩阵赋予一些假设来证明该系统的全局吸引子的存在性以及持久性.并且对于这样的一致持久系统,将进一步证明其存在一个内部吸引子并且在该内部吸引子内有一个共存态. The authors consider a lattice model for a single species in a one-dimensional patchy environment with finite number of patches connected by diffusion. Under some assumptions on birth functions and matrix component with death and diffusion rates, the authors showed the existence of global attractor and uniform persistence of the model by engaging persistence in infinite dimensional systems established by J. K. Hale and P. Waltman. Furthermore, for such a uniformly persistent system, the authors can prove that there exists an interior global attractor in which a coexistence steady state occurs.
作者 由红连 袁荣
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期238-243,共6页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10671021) 教育部博士点基金资助项目
关键词 阶段结构 全局吸引子 持久性 stage-structure lattice global attractor permanent
  • 相关文献

参考文献13

  • 1Gourley S,Wu J. Extinction and periodic osillations in an age-structured population model in a patchy environment,[J]. Math Anal Appl, 2004 , 289:431.
  • 2Kyrychko Y, Gouley S, Bartuccelli M. Dynamics of a stage-structured population model on an isolated finite lattice, SIAM [J]. Math Anal, 2006, 37: 1688.
  • 3Magal P,Zhao X. Global attractors and steady states for uniformly persistent dynamical systems, SIAM [J]. Math Anal,2005,37 : 251.
  • 4Smith H. Monotone Dynamical System: An Introduction to the Theorem of Competitive and Cooperative Systems [M]. 41,AMS, 1995.
  • 5Smith H, Thieme H. Strongly order preserving semiflows generated by functional differential equations [J]. Differential Equations, 1991,93 : 332.
  • 6So J, Wu J, Zou X, Structured population on two patches: modeling dispersal and delay[J]. Math Biol,2001,43:37.
  • 7Sell G, You Y. Dynamics of Evolutionary Equatuions [M]. New York: Springer-Verlag,2002.
  • 8Weng P, Huang H, Wu J. Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, IMA [J]. Appl Math, 2003,68: 409.
  • 9Zhao X. Dynamical Systems in Population Biology[M]. New York: Springer, 2003.
  • 10Berman A, Plemmons tL Normegative matrices in the mathematical sciences [M]. Philadelphia:Classics Appl Math,9 SIAM, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部