期刊文献+

具有捕食者相互残杀项时滞系统的Hopf分支 被引量:2

Stability and Hopf Bifurcation Analysis on a Predator-prey Model with Delay Dependence and the Term of Predator Kill Each Other
原文传递
导出
摘要 研究了具有捕食者相互残杀项的时滞系统的Hopf分支,通过选择时滞作为一个分支参数,研究了正平衡点的稳定性和正周期解的Hopf分支.而且通过应用规范型和中心流形的理论,得出了确定分支方向的明确的算法. Hopf bifurcation for two-species Lokta-Volterra predator-prey systems with delay dependence and the term of predator kill each other is investigated. By choosing the delay as a bifurcation parameter, we investigate the stability of positive equilibrium and Hopf bifurcation of positive periodic solutions. By using the normal form theory and center manifold argument, the explicit formulae which determine the direction of bifurcating periodic solutions are derived.
作者 常佳佳 张广
机构地区 中北大学数学系
出处 《数学的实践与认识》 CSCD 北大核心 2009年第12期97-102,共6页 Mathematics in Practice and Theory
基金 天津商业大学应用数学重点学科资助(X0803)
关键词 HOPF分支 稳定性 捕食-被捕食 周期解 时滞 hopf bifurcation stability predator-prey periodic solutions delay
  • 相关文献

参考文献10

  • 1May R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology,1973, 4:315-325.
  • 2Yan X P, Zhang C H. Hopf Bifurcation in a Delayed Lokta-Volterra Predator-prey System[M]. Nonlinear Anal RWA, 2006.
  • 3Faria T. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion[J]. J Math Appl, 2001,254:433-463.
  • 4Song Y L, Wei J J. Loeal Hopf bifureation and global periodie solutions in a delayed predator-prey system[J]. J Math Appl, 2005,301 : 1-21.
  • 5Yan X P, Li W T. Hopf bifurcation and global periodic solutions in a delayed predator-prey system[J]. Appl Math Comput, 2006,177: 427-445.
  • 6Fox L R. Cannibalism in natural populations[J]. Ann Rev Ecol Syst, 1975,6:87-106.
  • 7Meffe G K, Density-Dependent cannibalism in the endangered sonoran topminnow (Poeciliopsis occidentalis)[J]. Ann Rev Ecol Syst, 1984,12 : 500-503.
  • 8Elgar M A, Crespi B J (Eds). Oxford: Oxford University Press,1992.
  • 9Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation [M]. Cambridge University Press, Cambridge, 1981.
  • 10Jinzhu Zhang, Zhen Jin, Jurang Yan, Guiquan Sun. Stability and Hopf bifurcation in a delayed competition system[J]. Nonlinear Anal, 2009,70 : 658-670.

同被引文献8

  • 1May R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology, 1974:315 - 325.
  • 2Faria T. Stability and bifurcation for a delayed predator - prey model and the effect of diffusion [J]. J Math Appl, 2001, 254 : 433-463.
  • 3Hale J K . Theory of functional differential equations[M]. New York: Spring - Verlag, 1997.
  • 4Song Y, Han M,Wei J. Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays[ J ]. Phys D,2005 (200) :185 -204.
  • 5Freedman H, Sree Hari Rao V. The trade - off between mutual interference and time lags in predator - prey systems [ J ]. Bulletin of Mathematical Biology, 1983,45:991 ~ 1004.
  • 6李小玲,胡广平.时滞食饵-捕食系统平衡点的稳定性和周期解[J].兰州大学学报(自然科学版),2009,45(2):81-84. 被引量:6
  • 7王希,张凤琴,冯小梅.具有多时滞的食物链系统的Hopf分支[J].数学的实践与认识,2009,39(22):91-95. 被引量:4
  • 8马战平.捕食-食饵模型的稳定性和Hopf分支[J].昆明冶金高等专科学校学报,2010,26(1):65-69. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部