期刊文献+

Critical behavior of a dynamical percolation model

Critical behavior of a dynamical percolation model
原文传递
导出
摘要 The critical behavior of the dynamical percolation model,which realizes the molecular-aggregation conception and describes the crossover between the hadronic phase and the partonic phase,is studied in detail. The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/ν and τ are extracted from the distribution of the average cluster size and cluster number density. The influences of two model related factors,i.e. the maximum bond number and the definition of the infinite cluster,on the critical behavior are found to be small. The critical behavior of the dynamical percolation model,which realizes the molecular-aggregation conception and describes the crossover between the hadronic phase and the partonic phase,is studied in detail. The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/ν and τ are extracted from the distribution of the average cluster size and cluster number density. The influences of two model related factors,i.e. the maximum bond number and the definition of the infinite cluster,on the critical behavior are found to be small.
出处 《Chinese Physics C》 SCIE CAS CSCD 2009年第7期552-556,共5页 中国物理C(英文版)
基金 Supported by National Natural Science Foundation of China (10775056, 10835005)
关键词 PERCOLATION critical exponent molecule-like aggregation DELOCALIZATION percolation, critical exponent, molecule-like aggregation, delocalization
  • 相关文献

参考文献18

  • 1Lee T D, Wick G C. Physics. Rev. D, 1974, 9: 2291.
  • 2Lee T D. Rev. Mod. Phys., 1975, 47: 267.
  • 3Collins J C, Perry M J. Phys. Rev. Lett., 1975, 34: 1353.
  • 4Shuryak E V. Phys. Rept., 1980, 61:71.
  • 5Fodor Z, Katz S D. JHEP, 2004, 04:050.
  • 6XU Ming-Mei, YU Mei-Ling, LIU Lian-Shou. Phys. Rev. Lett., 2008, 100:092301.
  • 7Christensen K, Moloney N R. Complexity and Criticality. London: Imperical College Press, 2005. 3.
  • 8WANG Fan et al. Phys. Rev. Lett., 1992, 69:2901.
  • 9Fortunato S, Satz H. Phys. Letters. B, 2001, 509: 189; Nucl. Phys. B, 2001, 598:601.
  • 10Binder K, Heermann D W. Monte Carlo Simulations in Statistical Physics. Springer-Verlag, 1988. 40--41.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部