期刊文献+

变截面Timoshenko悬臂梁自由振动分析 被引量:9

Free Vibration of Non-uniform Timoshenko Cantilever Beams
下载PDF
导出
摘要 为考虑剪切变形和转动惯量的影响,基于模态摄动法基本原理,提出了一种求解变截面Timoshenko悬臂梁自由振动问题的近似解法。这一方法是利用等截面Euler梁的特征值和模态,将变截面Timoshenko梁特征方程的偏微分方程组转化为代数方程组进行求解,从而得到变截面Timoshenko梁的特征值和模态。该方法适用于求解任意复杂截面型式梁的动力特性,无论梁的截面变化是否连续。随后对截面阶跃变化和线性变化2类变截面梁进行算例分析,数值分析结果表明,这一方法简单、实用,具有良好的精度。 In order to consider the effect of shearing deformation and rotating inertia, an approximate method, which is based on modal perturbation method, is proposed for the free vibration analysis of nonuniform Timoshenko cantilever beams. With the eigenvalues and eigenvectors of uniform Euler beams, a set of partial differential characteristic equations of non-uniform Timoshenko beams is transformed into a set of algebraic equations for solutions of non-uniform Timoshenko beams. The method can solve the dynamic characteristics of beams with complicated cross-section, whether the cross-section variation is continuous or discontinuous. At the end, two types of beams, namely (a) discontinuous variation of thickness and (b) continuous and linear variation, are analyzed and shown that the method is simple, practicable and owns good precision.
出处 《土木建筑与环境工程》 CSCD 北大核心 2009年第3期25-28,共4页 Journal of Civil,Architectural & Environment Engineering
基金 2006年度新世纪优秀人才支持计划资助项目(NCET-06-0084)
关键词 变截面悬臂梁 TIMOSHENKO梁 模态摄动法 自由振动 近似解 non-uniform cantilever beams Timoshenko beams mode perturbation free vibration approximate solution
  • 相关文献

参考文献17

  • 1TIMOSHENKO S, YOUNG D H, WEAVER W. Vibration problems in engineering [M]. 4th edition, John Wiley & Sons, Inc. 1974.
  • 2VAN RENSBURG N F J, VAN DER MERWE A J. Natural frequencies and modes of a Timoshenko beam [J]. Wave Motion, 2006, 44: 58-69.
  • 3ROSSI R E, LAURA P A A, GUTIERREZ R H. A note on transverse vibrations of a Timoshenko beam of non uniform thickness clamped at one end and carrying a concentrated mass at the other [J]. Journal of Sound and Vibration, 1990, 143: 491-502.
  • 4EISENBERGER M. Derivation of shape functions for an exact 4-D. O. F. Timoshenko beam element [J]. Communications in Numerical Methods in Engineering, 1994, 10: 673-681.
  • 5EISENBERGER M. Dynamic stiffness matrix for variable cross-section Timoshenko beams[J]. Communications in Numerical Methods in Engineering, 1995, 11: 507-513.
  • 6GUTIERREZ R H, I,AURA P A A, ROSSI R E. Fundamental frequency of vibration of a Timoshenko beam of non-uniform thickness [J]. Journal of Sound and Vibration, 1991, 145:341- 344.
  • 7FARGHAI.Y S H. Vibration and stability analysis of Timoshenko beams with discontinuities in cross section [J]. Journal of Sound and Vibration, 1994, 174(5): 591-605.
  • 8FARGHAI.Y S H, GADELRAB R M. Free vibration of a stepped composite Timoshenko cantilever beam [J]. Journal of Sound and Vibration, 1995, 187 (5): 886- 896.
  • 9TONG X, TABARROK B, YEH K Y. Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section [J]. Journal of Sound and Vibration, 1995, 186(5): 821-835.
  • 10LEUNG A Y T, ZHOU W E. Dynamic stiffness analysis of axially loaded non-uniform Timoshenko columns [J]. Computers & Structures, 1995, 56: 577-588.

二级参考文献16

  • 1罗远诠,刘悦.非线性方程组的一个迭代解法[J].大连理工大学学报,1993,33(3):249-254. 被引量:3
  • 2铁木辛柯.工程中的振动问题[M].北京:人民铁道出版社,1978..
  • 3楼梦麟.线性广义特征值问题在模态子空间的摄动解[J].同济大学学报,1994,22(3):269-273.
  • 4楼梦麟.变参数土层的动力特性和地震反应分析[J].同济大学学报(自然科学版),1997,25(2):155-160. 被引量:15
  • 5RoyR CraigJr著 常岭 李振邦译.结构动力学[M].北京:人民交通出版社,1996..
  • 6Kim J U, Renardy Y. Boundary Control of the Timoshenko Beam. SIAM Control and Optimization,1987, 25(6)
  • 7楼梦麟,同济大学学报,1994年,22卷,3期,268页
  • 8熊建国,地震工程与工程振动,1986年,6卷,4期,21页
  • 9铁木辛柯S 胡人礼.工程中的振动问题[M].北京:人民铁道出版社,1978..
  • 10俞载道.结构动力学基础[M].同济大学出版社,1988..

共引文献46

同被引文献64

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部