期刊文献+

微分求积法求解高速大规模集成电路互连线的瞬态响应 被引量:2

Application of Differential Quadrature Method to the Transient Simulation of Interconnects in High Speed VLSI
下载PDF
导出
摘要 本文将微分求积法(DQ方法)应用于高速大规模集成电路互连线的瞬态模拟。DQ方法是一种直接的数值方法 ,与差分和有限元法相比 ,它的计算量可以大大降低 ,且具有较高的精度。DQ方法的主要思想是将某坐标方向上的微分算子用该方向上一系列适当的离散点的函数值加权逼近 ,将偏微分方程化为常微分方程或代数方程求解。DQ方法用于高速大规模集成电路互连线系统的瞬态模拟非常有效 。 The numerical technique of differential quadrature (DQ)method is employed for transient simulation of the interconnect systems in high speed VLSI.The DQ method is first introduced by Bellman and his associates for the solution of linear and non linear partial differential equations.It is based on the representation of the derivative operator in a discrete coordinates .The DQ method can lead to accurate results with relatively small computational effort.It can be applied to extensive cases in the problems of transient simulation of lossy transmission lines.Numerical results show that moderately accurate solutions can be derived rapidly.
出处 《电路与系统学报》 CSCD 1998年第2期76-81,共6页 Journal of Circuits and Systems
关键词 微分求积法 VLSI 互连线系统 Differential quadrature method ,high speed VLSI,interconnect,transmission lines ,transient simulation.
  • 相关文献

参考文献9

  • 1A.R.Djordievic,T,K,Sarkar and R.F Harrington,Time domain response of Multicoductor Transission lines,IEEE Proc Vol.75,No.6,pp743-764,June 1987.
  • 2R.Bellman,B. G. Kashef and J.Casti.Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations,J Comput,Phys,vol.10,No.1,pp40-52,1972.
  • 3B.Shizgal and R.Blackmore."A diserete ordinate method of solution of linear boundary value and eigenvalue problems,J.Comput,Phys,vol.155,No.2,pp313-327,1984.
  • 4S.K.Jang C.W. Bert and A.G Striz," Application of diffefrential qudrature to static analysis of structural components,Int.J Numer methods Eng,vol.29,No.3,pp561-577,1989.
  • 5G.Mansell.W.Merryfield,B,Shizgal and U.Weinert,A comparison of differntial quadrature methods for the solution of partial differntial equations,Comput,Methods Appl Mech Engrg vol.104,No.3,pp295-316,1993.
  • 6H.Du M K,Lin Application of generalized differntial quadrature method to structural problems,Int,J Numer Methods Eng,vol.37,No.11,pp1881-1896,1994.
  • 7A.G.Striz,X. Wang and C. W.Bert."Harmonic differential quadrature method and applications to analysis of structural components,"Acta Mechanica,vol.111,No.1-4,pp85-94,1995.
  • 8J.F.Mao and Z.- F. Li "Analysis of the time response of transmission lines with frequency dependent losses by the method of convolution characteristic,IEEE Trans Microwave Theory Tech vol.MTT-40,No,4,pp637-645,Apr.1992.
  • 9C.Canuto,M. Y. Hussaini,A. Quarteroni,and T.A Zang,Spectral methods in fluid dynamics,Springer Series in Computational Physics,Berlin,Herdelberg,Springer Verlag,1987.

同被引文献23

  • 1Mao J F,IEEE Trans Circuits Syst,1997年,44卷,5期,391页
  • 2Lin S,IEEE Trans Circuits Syst,1992年,39卷,11期,879页
  • 3Mao J F,IEEE Trans Microwave Theory Tech,1992年,40卷,4期,637页
  • 4Chang F Y,IEEE Trans Microwave Theory Tech,1989年,37卷,12期,2028页
  • 5Liu Y K,Proc IEEE (letters),1968年,56卷,6期,1090页
  • 6Bellman R E,Casti J. Differential quadrature and longterm integration [J]. Journal of Mathematical Ana-lysis and Application,1971,34(2) : 235-238.
  • 7Bert C W,Malik M. Differential quadrature method incomputational mechanics a review [J], Applied Me-chanics Reviews,1996,49(1) : 1-28.
  • 8Shu C. Differential Quadrature and its Applicationin Engineering [M]. Berlin:Springer. 2000.
  • 9Chen C N. The two-dimensional frames model of thedifferential quadrature element method [J]. ComputerStructures , 1997,62(3) :555-571.
  • 10Fung T C. Solving initial value problems by differen-tial quadrature method (Part 1) first order equations[J]. International Journal for Numerical Methodsin Engineering , 2001,50(6) : 1411-1427.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部