期刊文献+

α-混合过程条件密度的估计及其性质

On α-Mixing Process's Conditional Density Estimator and Its Properties
下载PDF
导出
摘要 本文在{X_t,t∈N}是一个严平稳过程的假设下,用核估计的方法对未来状态X_(N+T)的条件密度进行估计.在假设{X_t,t∈N}是α-混合过程的情况下,讨论了过程有限维密度核估计的期望与方差,以及过程条件密度核估计的偏及均方误差.在一定条件下,证明了估计的弱收敛性. This paper applies the kernel method to estimate the conditional density of future state XN+T, under strictly stationary assumption. In the case of assuming (Xt,t ∈ N} to be an α-mixing process, we discuss the expectation and variance of the kernel estimator of the process's finite dimensional density, and the bias, MSE of the kernel estimator of the process's conditional density. We also prove the weak convergency of the estimator under some given conditions.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2009年第1期71-80,共10页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金(60773081)资助项目
关键词 平稳过程的条件密度 α-混合过程 核估计 均方误差(MSE) 弱收敛 conditional density of stationary process, α-mixing process, kernel estimate, mean square error (MSE), weak convergence
  • 相关文献

参考文献13

  • 1Rosenblatt M.Remark on nonparametric estimators of a density function[J].Ann.Math.Statist,1956,27:832-837.
  • 2Parzen E.On estimation of a probability density function and model[J].Ann.Math.Statist,1962,33:1065-1076.
  • 3Wu WeiBiao,Jan Mielniczuk.Kernel Density Estimation for linear Processes[J].Ann.Statist,2002,30(5):1441-1459.
  • 4Hallin M.,Ran L.T.Kernel Density Estimation for linear processes,Asymptotic nomality and optimal bandwidth derivation[J].Ann.Inst.Statist.Math,1996,48:430-448.
  • 5凌能祥.线性过程误差下概率密度函数核估计的均方相合性[J].纯粹数学与应用数学,2004,20(2):99-102. 被引量:2
  • 6Rosenblatt M.Conditional probability density and regression estimators[M].In:Krishnalah,P.R.(Ed.),Multivariate Analysis II.New York:Academic Press,1969,25-31.
  • 7Hyndman R.J.,Bashtannyk D.M.and Grunwald G.K.Estimating and visualizing conditional densities[J].J.Comput.Graph.Statist,1996,5:315-336.
  • 8Hyndman R.J.and Yao Q.Nonparametric estimation and symmetry tests for conditional density functions[R].Department of Econometrics and Business Statistics,Monash University,1998,17-98.
  • 9Stone C.J.The use of polynomial splines and their tensor products in multivariate function estimation[J].Ann.Statist,1994,22.
  • 10Xiang Xiaojing.A Kernel Estimator of a Conditional Quantile[J].Journal of Multivariate Analysis,1996,59:206-216.

二级参考文献6

  • 1RosenblattM. Remark on nonparametric estimators of a density function[J]. Ann. Math. Statist,1956,27:832-837.
  • 2Parzen E. On estimation of a probability density function and model[J]. Ann. Math. Statist,1962,33:1065-1076.
  • 3Wei Biao Wu, Jan Mielniczuk. Kernel Density Estimation for linear Processes[J]. Ann. Statist,2002,30(5) :1441-1459.
  • 4Hallin M,TRan,L T. Kernel Density Estimation for linear processes,Asymptotic nomality and optimal bandwidth derivation[J]. Ann. Inst. Statist. Math, 1996,48: 430- 448.
  • 5Hall P, Heyde C C. Martingale limit theory and its Applicaiton [M]. NewYork, London: Acadeninc Press, 1980.
  • 6韦来生.NA样本概率密度函数核估计的相合性[J].系统科学与数学,2001,21(1):79-87. 被引量:35

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部