期刊文献+

电液伺服系统的神经网络建模方法研究 被引量:3

Neural networks modeling of electrohydraulic systems
下载PDF
导出
摘要 针对电液伺服系统固有的流量-压力特性等非线性因素使得采用传递函数等传统方法难以获得电液伺服系统的精确模型的问题,详细研究了电液伺服系统的神经网络建模方法。研究了两种最常见的神经网络,即多层感知器神经网络和径向基函数神经网络,采用5种典型学习算法构造了3种多层感知器神经网络和2种径向基函数神经网络,并结合自动定深电液伺服系统的工程实例,详细分析了这5种神经网络在电液伺服系统中的建模性能。研究结果表明,采用正交最小二乘算法的径向基函数神经网络最适合电液伺服系统的建模。 Aiming at the problem that construction of an accurate model of an electrohydraulic system based on traditional linear methods remains a difficult task due to its nonlinear characteristics including flow/pressure relation, etc, the paper presents a thorough study on modeling of electrohydraulic systems using different types of neural networks. The two widely used neural networks, i.e. the multilayer perceptron neural network (MLPNN) and the radial basis function neural net- work (RBFNN) were investigated, and three MLPNNs and two RBFNNs were constructed using their five typical training algorithms. All these techniques were then applied to an automatic depth control electrohydraulic system, and the model- ing performance of the five networks in the electrohydraulic system was analyzed. The results clearly indicated that the ra- dial basis function neural network with the orthogonal least square training algorithm is prior to other neural networks for modeling of electrohydraulic systems.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第6期620-626,共7页 Chinese High Technology Letters
基金 国家自然科学基金(60674001) 国家重点实验室开放课题基金(SKL2008K010) 南京理工大学科技发展基金(XKF09003)资助项目
关键词 电液伺服系统 多层感知器神经网络(MLPNN) 径向基函数神经网络(RBFNN) 建模 electrohydraulic system, muhilayer perceptron neural networks (MLPNN), radial basis function neural networks (RBFNN), modeling
  • 相关文献

参考文献13

二级参考文献33

  • 1叶金杰,岑豫皖,潘紫微,甄茂新.回归神经网络辩识电液伺服系统模型与仿真[J].系统仿真学报,2004,16(9):2056-2058. 被引量:10
  • 2陈继芳,周晓军,杜兴吉,郭天太.基于虚拟样机技术的液压支撑平台动力学仿真[J].机床与液压,2004,32(11):42-43. 被引量:3
  • 3邢宗义 ,贾利民 ,张永 ,胡维礼 ,秦勇 .一类基于数据的解释性模糊建模方法的研究[J].自动化学报,2005,31(6):815-824. 被引量:12
  • 4刘光临,沈全成,陈奎生.泵控缸速度控制系统动态特性研究[J].液压与气动,2006,30(2):38-41. 被引量:7
  • 5W Kemmetmuller, S Muller, A Kugi. Mathmatical modeling and nonlinear controller design for a novel electrohydraulic power-steering system [J]. IEEE Trans. on Mechatronics (S1083-4435), 2007, 12(1): 85-97.
  • 6P J Costa Branco, J A Dente. On using fuzzy logic to integrate learning mechanisms in an electro-hydraulic system-Part I: actuator's fuzzy modeling [J]. IEEE Trans. systems, man and cybernetics-Part C (S1094-6977), 2000, 30(3): 305-316.
  • 7S He, N Sepehri. Modeling and prediction of hydraulic servo actuators with neural networks [C]// Proceeding of American Control Conference, 1999, San Diego, USA. New York: IEEE Publisher, 1999: 3708-3712.
  • 8Y. Kang, M-H, Chu, Y-L, Liu. An adaptive control using multiple neural networks for the position control in hydraulic servo system [C]//LNCS, ICNC, 2005. New York: Springer, 2005, 3661: 296-305.
  • 9M Jelali, A Kroll. Hydraulic servo-systems: modeling, identification and control. [M]. London, UK: Springer, 2003.
  • 10H E Merritt. Hydraulic control systems [M]. USA: Wiley, 1967.

共引文献67

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部