期刊文献+

互斥关系模式挖掘算法研究 被引量:2

Study on Algorithm of Mining Exclusive Relation Pattern
下载PDF
导出
摘要 序列模式挖掘是数据挖掘的一个重要领域,在序列挖掘的基础上有了结构关系模式的概念,重点研究结构关系模式的一个重要分支——互斥关系模式.首先给出互斥关系模式的定义,然后讨论什么是负关联规则挖掘及其与互斥关系模式之间的联系与区别,从而得到互斥关系模式挖掘的过程;给出互斥关系模式挖掘过程采用的主要算法,并针对算法进行设计与实现,实验证明算法正确有效. Sequential patterns mining plays an essential role in many areas and substantial research has been conducted on their analysis and applications. Structural Relation Pattern mining is a new kind of data mining task which is proposed based on sequential pattern mining. Exclusive relation pattern is one of the most important forms of Structural Relation Pattern. First of all, the definition relating to exclusive relation patterns is given. Secondly, what is negative association rule mining and the difference and relation between negative association rule mining and exclusive relation pattern mining are introduced. Through them, the process of exlucive relation patterns mining is proposed. In this paper, the algrithm of mining is introduced, and some tests focusing on the algrithm are done. Through tests, the algrithm of mining exclusive relation pattern is proved to be right.
出处 《沈阳化工学院学报》 2009年第2期154-160,共7页 Journal of Shenyang Institute of Chemical Technolgy
基金 辽宁省教育厅科学研究计划资助项目(05L338)
关键词 结构关系模式 互斥关系模式 负关联规则 序列模式 structural relation pattern exclusive relation pattern negative assocation rules sequen-tial pattern
  • 相关文献

参考文献5

  • 1LU J,ADYEI O,CHEN W R,et al.Post Sequential Pattern Mining:A New Method for Discovering Structural Patterns[C].Beijing:Springer Press,2004:239-250.
  • 2LU J,ADJEI O,WANG X F,et al.Sequential Patters Modelling and Graph Pattern Mining[C].Perugia,Italy:IEEE Computer Society Press,2004:755-761.
  • 3LU J,ADJEI O,ellEN W R,et al.An Aptiori Based Algorithm for Mining Concurrent Branch Pattern[C].Sovata,Romania:Samia Press,2005:183-189.
  • 4张洋,陈未如,纪元.互斥关系模式挖掘算法研究[J].计算机工程与设计,2008,29(22):5776-5779. 被引量:4
  • 5Wu Xindong,Zhang Chengqi,Zhang Shichao.Efficient Mining of Both Positive and Negative Association Rules[J].ACM Transactions on Informations Systems,2004(7):381 -405.

二级参考文献9

  • 1Ayres J,Flannick J,Gehrke J.Sequential pattern mining using a bitmap representation [J]. Knowledge Discovery and Data Mining,2002,12(6):429-435.
  • 2Lu J,Adjei O,Chen W R, et al.Post sequential pattern mining: A new method for discovering structural patterns [C]. Beijing, China:Proceedings of the 2nd International Conference on Intelligent Information Processing,2004:239-250.
  • 3Mannila H Meek.Global partial orders from sequential data[C]. Sixth Annual Conference on Knowledge Discovery and Data Mining(KDD,2000),2000:161-168.
  • 4Inokuchi A,Washio T, Motoda H.An apriori-based algorithm for mining frequent substructures from graph data [C]. PDKK'00, 2000:13-23.
  • 5Lu J, Adjei O, Chen W R, et al.An apriori-based algorithm for mining concurrent branch pattern[C]. Romania:Proc of the 4th RoEduNet International Conference:Education/Training and Information/Communication Technologies-RoEduNet, 2005:183- 189.
  • 6Lu J,Adjei O,Chen W R, et al.Large candidate branches-based method for mining concurrent branch pattem[C]Studia Univ Babes-Bolyai, Informatica,2005:49-57.
  • 7Antonie M L,Zaiiane O R.Mining positive and negative association rules: An approach for confined rules[J] Proc Intl Conf on Principles and Practice of Knowledge Discovery in Databases, 2004:27-38.
  • 8Wu Xindong,Zhang Chengqi,Zhang Shichao.Efficient mining of both positive and negative association rules [J]. ACM Transactions on Information Systems,2004(7):381-405.
  • 9Pei J,Han J,Mortazavi B.Prefixspan:Mining sequential patterns efficiently by prefix-projected pattern growth[J].Data Engineering,2001,8(4):215-224.

共引文献3

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部