期刊文献+

A NOTE ON MULTIFRACTAL PACKING DIMENSION OF MEASURES

A NOTE ON MULTIFRACTAL PACKING DIMENSION OF MEASURES
下载PDF
导出
摘要 The relations between the multifractal packing dimension of Borel probability measures and the asymptotic behavior of the function Ф*(x)=limsup logv(B(x,r))-qlogu(B(x,r))/logr are discussed and some applications are given. The relations between the multifractal packing dimension of Borel probability measures and the asymptotic behavior of the function Ф*(x)=limsup logv(B(x,r))-qlogu(B(x,r))/logr are discussed and some applications are given.
作者 Jinjun Li
出处 《Analysis in Theory and Applications》 2009年第2期147-153,共7页 分析理论与应用(英文刊)
基金 Supported by the Education Committee of Fujian Province(JA08155)
关键词 multifractal packing dimension of measures essential bound multifractal packing dimension of measures, essential bound
  • 相关文献

参考文献6

  • 1Batakis, A,Testud, B.Multifractal Analysis of Inhomogeneous Bernoulli Products[]..
  • 2Dai,M. F.Multifractal Analysis of a Measure of Multifractal Exact Dimension[].Nonlinear Analysis.2008
  • 3Falconer,K. J.Techniques in Fractal Geometry[]..1997
  • 4Heurteaux,Y.Dimension of Measures: the Probabilistic Approach[].PublMat.2007
  • 5Mattila P.Geometry of Sets and Measures in Euclidean Space[]..1995
  • 6Olsen,L.A multifractal formalism[].Advances in Mathematics.1995

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部