摘要
将蚁群优化和变邻域下降搜索VND相结合,形成一种混合启发式算法ACS_VND,应用于客运公司的汽车调度,求解车辆需求数和最佳路径。该算法充分利用了2种不同算法的优点。实验结果表明,算法ACS_VND能在较短时间内获得比单个算法更好的车辆调度路径。
We combine the ant colony system(ACS in short) with variable neighborhood descent in the research. Thus a hybrid heuristics (ACS_VND) is formed, and applied into in the scheduling of passenger car to know the number of the demand for vehicles and the best path. The algorithm makes full use of the merits of two different algorithms. The result in the research also shows that the algorithm ACS_VND can get a better way to schedule the vehicle in the relatively short time.
出处
《电子技术应用》
北大核心
2009年第7期125-127,共3页
Application of Electronic Technique
基金
江西省自然基金(0511035)
关键词
蚁群系统
变邻域下降搜索
车辆路径
混合启发式算法
ant colony system
variable neighborhood descent
the rout of vehicle
hybrid heuristic algorithm