期刊文献+

基于模糊LS-SVM的净化过程钴离子浓度软测量 被引量:2

Soft cobalt-ion concentration measurement for purification process based on fuzzy LS-SVM
下载PDF
导出
摘要 针对锌湿法冶炼净化过程的复杂性,提出一种基于模糊最小二乘支持向量机方法的净化过程钴离子浓度软测量模型。考虑到不同时期以及不同区域样本数据所起的作用不一样,提出一种综合模糊加权函数,有效提高了最小二乘支持向量机的性能。以净化过程生产数据进行实验验证分析,计算结果表明:模糊最小二乘方法性能优于传统最小二乘方法,模型具有精度高、泛化性能好等特点,钴离子浓度软测量结果满足现场工艺参数要求,可以作为过程信息用于净化过程的优化控制。 Aiming at the complexity of the purification process in zinc hydrometallurgy, a cobaltion concentration soft measurement model is proposed based on fuzzy least square support vector machine (LS-SVM) . Owing to the differ- ent effect of the sample in different periods and in different sample space, a comprehensive weight function is presen- ted, the performance of LS-SVM to deal with the noisy data is improved effectively. The experimental verification a- nalysis is performed using the industrial production data from purification process. The experimental results show that the weighted FLS-SVM model performs better than the traditional LS-SVM model and has high accuracy and good generalization property. The soft measurement results satisfy the technology requirements of production and can be used as the operation optimization information for the purification process.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第6期1224-1227,共4页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60634020 60874069 608037) 国家863计划(2006AA04Z181)资助项目
关键词 净化过程 离子浓度软测量 模糊LS-SVM purification process cobalt concentration soft measurement fuzzy LS-SVM
  • 相关文献

参考文献10

  • 1刘庆华,张为公,龚宗洋.广义回归神经网络在汽车换档机械手运动轨迹测量中的应用[J].仪器仪表学报,2008,29(2):361-364. 被引量:5
  • 2YANG CH H, DECONINCK G, GUI W H. An optimal power-dispatching control system for the electrochemical process of zinc based on back propagation and Hopfield neural networks[ J ]. IEEE Trans. on Industrial Electronics, 2003,50(5) :953-961.
  • 3李勇刚,桂卫华,阳春华.一种改进的RPCL聚类算法及其在软测量中的应用[J].计算机工程与应用,2003,39(31):30-32. 被引量:2
  • 4VAPNIK V N. The nature of statistical learning theory [ M]. New York: Springer Verlag, 1995.
  • 5VAPNIK V N. An overview of statistical learning theory [ J ]. IEEE Trans Neural Networks, 1999,10 (5) :988-999.
  • 6常玉清,王福利,王小刚,吕哲.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报,2006,27(3):241-244. 被引量:28
  • 7SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [ J ]. Neural Processing Letters, 1999,9(3) :293-300.
  • 8SHIEH M-D, YANG C-C. Classification model for product form design using fuzzy support vector machines [ J ]. Computers & Industrial Engineering, 2008,55 ( 1 ) : 150-164.
  • 9JIN B, TANG Y C, ZHANG Y Q. Support vector machines with genetic fuzzy feature transformation for biomedical data classification [ J ]. Information Sciences, 2007,177 ( 2 ) : 476-489.
  • 10YANG CH H, ZHU H Q, GUI W H. Improved-PSO-based optimal scheduling for rectifier power system[ C ]. The 17th IFAC World Congress, Seoul, Korea, 2008:6078-6083.

二级参考文献17

共引文献32

同被引文献29

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部