期刊文献+

利用系统误差延续性的基线解算选权拟合法

Selecting Weight Fitting Method for Baseline Solution with Systematical Errors Continuation
原文传递
导出
摘要 提出了一种新算法,将系统误差作为待估参数纳入观测方程,此时观测方程属于观测数小于待估参数个数的秩亏方程。在双差模糊度固定之后,借鉴"选权拟合"思想,不仅对基线分量进行约束,还利用系统误差前后历元的延续性,对系统误差参数进行了约束。用正则化算法估算出系统误差,然后再利用削弱了系统误差的观测方程求出基线分量的精确解。算法不仅削弱了系统误差对GPS精密定位结果的影响,而且可以直接求出系统误差估值,为进一步分析系统误差的特性提供依据。 We propose a new method where systematical errors are involved in observation equation. Because the number of observation equations are less than that of unknown parameters, observation equations are rank-deficient. With ambiguity resolution, based on "select weight fitting" principle, observation equations are constrained not only through baseline components but also through systematical errors continuations of adjacent epochs. According to this method, the impact of systematical errors on GPS DD positioning accuracy can be mitigated effectively. Furthermore, the systematical errors can be achieved directly.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第7期787-789,813,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40674012,40874009) 国家863计划资助项目(2007AA12Z305)
关键词 GPS双差观测方程 系统误差 选权拟合 GPS DD observation equation systematical error selecting weight fitting
  • 相关文献

参考文献11

  • 1Moritz H. Least Squares Collocation[M]. Munich:Deatsche Geodat Kommission (DGK), 1973.
  • 2周江文.系统误差的数学处理[J].测绘工程,1999,8(2):1-4. 被引量:23
  • 3陈永奇,Chrza.,A.模拟GPS精密测量系统误差的若干问题[J].武汉测绘科技大学学报,1994,19(4):310-314. 被引量:5
  • 4张松林,王新洲.非线性半参数模型在GPS系统误差处理中的应用[J].测绘科学,2004,29(3):16-18. 被引量:9
  • 5施闯,刘经南,姚宜斌.高精度GPS网数据处理中的系统误差分析[J].武汉大学学报(信息科学版),2002,27(2):148-152. 被引量:30
  • 6Fisher B, Hegland M. Collocation, Filtering and Nonparametrie Regression[J]. Zeitsehrift Fur Vernessungswesen(ZFV), 1999,124(1/2) : 17-24,46-52.
  • 7Jia Minghai. Mitigation of Systematic of Systematic Errors of GPS Positioning Using Vector Semiparametric Models[C]. ION GPS 2001, Salt Lake,2001.
  • 8Satirapod C, Wang J, Rizos C. Modelling Residual Systematic Errors in GPS Positioning: Methodologies and Comparative Studies [C]. IAG Scientific Meeting, Budapest, Hungary,2001.
  • 9Guo Jianfeng. Partial Continuation Model-Based Mitigation of Systematic Errors of DD GPS Measurements[C]. ION GNSS 2005, Long Beach, California, USA, 2005.
  • 10Luo Xiaowen. A Three_Step Method to Separate Real-Time Systematic Errors Suitable for GPS Medium-Long Baselines [C]. ION GNSS 2006, Fort Worth, Texas, USA, 2006.

二级参考文献10

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部