期刊文献+

利用曲波域BivaShrink模型进行SAR图像去噪 被引量:3

Speckle Suppression Method for SAR Image with Curvelet Domain BivaShrink Model
原文传递
导出
摘要 从SAR图像Curvelet变换系数的统计特点出发,将Curvelet变换与子带相关去噪(BivaShrink)模型相结合,提出了一种新的基于Curvelet变换的SAR图像去噪方法。通过计算方差一致性范数和区域能量比,联合当前层和父层曲波系数,共同确定局部自适应窗口,从而最优估计Curvelet系数的阈值萎缩因子,实现降噪功能。实验结果表明,对于高分辨率SAR图像,该算法不论是在噪声的去除还是在结构信息等细节的保持上,均不同程度地优于其他常用斑点去噪方法,主观视觉效果和数值指标都有较好改进。 Based on the statistical property of SAR image speckle noise and curvelet property of capturing the intrinsic geometrical structure of image, a method of SAR image denoising based curvelet domain adaptive BivaShrink meodel is presented combining curvelet transform with BivaShrink denoising model. By combining current layer curvelet coefficients and previous layer curvelet coefficients to calculate variance homogeneous measurement(VHM), the local adaptive window is determined to estimate the shrinkage factor optimally, then the curvelet coefficients are shrunk using the shrinkage factor. The scheme utilizing the correlation of curvelet coefficients in the same subband and previous subband, and it can reduces SAR speckle noise effectively and preserving details of SAR image as well. Experiment results show that the presented method achieves better performance not only at speckle reduction but also at the preservation of structural detail information than other commonly used speckle filters.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第7期814-817,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(70771080) 湖北省教育厅科学基金资助项目(B20071103)
关键词 曲波变换 方差一致性范数 子带相关去噪 curvelet transform variance homogeneous measurement BivaShrink denoise
  • 相关文献

参考文献13

  • 1王青,徐新,管鲍,孙洪.一种基于Bayesian准则和MRF模型的SAR图像滤波方法[J].武汉大学学报(信息科学版),2005,30(5):464-467. 被引量:2
  • 2贺占庄,徐炜,黄士坦.SAR图像滤波的小波域多尺度HMM方法[J].武汉大学学报(工学版),2005,38(3):126-130. 被引量:2
  • 3徐新,王雁,陈嘉宇,孙洪.基于小波系数统计特征的SAR图像恢复[J].武汉大学学报(信息科学版),2006,31(10):855-857. 被引量:3
  • 4Frost V S, Stiles J A. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1982, 4(2) : 157-166.
  • 5Lee J S. Digital Image Enhancement and Noise Filtering by Useof Local Statistics[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1980, 2(2): 165-168.
  • 6Kuan F T, Sawchuk A A. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1985, 7(2):165-177.
  • 7Foucher S, Benie G B, Boucher J M. Multiscale MAP Filtering of SAR Images[J]. IEEE Transactions on Image Processing, 2001, 10(1):49-60.
  • 8Donoho D L. Denoising by Soft-Thresholding[J]. IEEE Transactions on Image Processing, 1995, 41 (3) : 613-627.
  • 9Candes E J, Donoho D L. Curvelets.. a Surprisingly Effective Nonadaptive Representation for Objects with Edges[M]//Cohen C R A, Schumaker L L. Curves and Surfaces. TN: Vanderbilt University Press, 2000.
  • 10Strack J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684.

二级参考文献36

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2Goodman J W. Some fundamental properties of speckle [J].Journal Optical Society America, 1976,66 ( 11 ) : 1145-1150.
  • 3Li Fuk-Kwok, Croft C, Held D N. Comparison of several techniques to obtain multiple-look SAR imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 1983,21 (3) :370-375.
  • 4Lee L S, Jurkevich I. Speckle filtering of synthetic aperture radar images :A Review[J]. Remote Sensing Reviews, 1994,8:313-340.
  • 5Donoho D L. De-noising by soft-thresholding[ J]. IEEE Transactions on Information Theory, 1995,41 (3) : 613 - 627.
  • 6Guo H, Odegard J E, Lang M, et al. Wavelet based speckle reduction with application to SAR based ATD/R[J]. IEEE International Conference on Image Processing, 1994,1:75- 79.
  • 7Gagnon L, Smaili F D. Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets [J ]. SPIE Proceedings, 1996,2759 : 14 - 24.
  • 8Gagnon L, Jouan A. Speckle filtering of SAR images-A comparative study between complex-wavelet-based and standard filters[J]. SPIE Proceedings 1997,3169:80-91.
  • 9Arsenault H H, April G. Properties of speckle integrated with a finite aperture and logarithmically transformed [J ]. Journal Optical Society America, 1976,66(11):1160-1163.
  • 10Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992,38(2) : 617-643.

共引文献8

同被引文献47

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2易翔,王蔚然.一种概率自适应图像去噪模型[J].电子学报,2005,33(1):63-66. 被引量:10
  • 3隆刚,肖磊,陈学佺.Curvelet变换在图像处理中的应用综述[J].计算机研究与发展,2005,42(8):1331-1337. 被引量:37
  • 4马立勇,马家辰,沈毅.基于像素融合的Curvelet医学超声图像降噪方法[J].中国医学影像技术,2007,23(6):934-936. 被引量:2
  • 5Candes EJ.Ridgelets:theory and applications[D].USA:Department of Statistics,Stanford University,1998.
  • 6Candes EJ,Donoho DL.Curvelet -A surprisingly effective non-adaptive representation for objects with edges[M]// Rabut C,Cohen A,Schumaker L L.Curves and Surfaces.Nashville.USA:Vanderbilt University Press,2000:105-120.
  • 7Donoho DL,Duncan MR.Digital curvelet transform:Strategy,implementation and experiments[R].Technical Report,Stanford University,1999.
  • 8Candes EJ,Donoho DL.New tight frames of curvelets and optimal representation of objects with piecewise-singularities[J].Communications on Pure and Applied Mathematics,2004,57(2):219-266.
  • 9Candes EJ,Demanet L,Donoho DL,et al.Fast discrete curvelet transforms[J].Multiscale Modeling and Simulation,2006,5 (3):861-899.
  • 10Safran MN,Freiman M,Werman M,et al.Curvelet-based sampling for accurate and efficient multi-modal image registration[EB/OL].2009-12-10.http://www.cse.huji.ac.il/-freiman/files/publications/conf/spie09CUrvelets.pdf.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部