期刊文献+

p-Laplace算子方程非齐次边值问题的上下解方法

Method of lower and upper solutions for non-homogeneous boundary value problems of type p-Laplacian equation
下载PDF
导出
摘要 研究了一类具p-Laplace算子的二阶非线性常微分方程在非齐次边界条件下的两点边值问题.通过变换,将具p-Laplace算子的二阶微分方程边值问题转化为一阶常微分方程边值问题,利用上下解方法,在较弱的条件下得到了最大解和最小解的存在性定理. By using the upper and lower solutions method, the existence of solutions was studied for a type of second-order two-points boundary value problems with p-Laplacian operator under non-homogeneous boundary conditions. By means of the transformation the second-order two-points boundary value problems with p-Laplacian operator were changed into the first-order two-points boundary value problems, and the suffcient conditions of the existence of maximum solution and minimum solution were obtained under the weaker conditions.
出处 《上海理工大学学报》 CAS 北大核心 2009年第3期205-208,共4页 Journal of University of Shanghai For Science and Technology
基金 上海市教委科研基金资助项目(05EZ52)
关键词 上下解 单调迭代方法 P-LAPLACE算子 最大解和最小解 非齐次边界条件 upper and lower solutions monotone iterative method p-Laplacian operator maximum solution and minimum solution non-homogeneous boundary conditions
  • 相关文献

参考文献6

二级参考文献21

  • 1马德香,周翠莲.一类具有p-Laplacian算子的多点边值问题正解的存在性[J].山东理工大学学报(自然科学版),2005,19(3):10-14. 被引量:2
  • 2翁世有,高海音,张晓颖,蒋达清.一维p-Laplacian奇异边值问题的存在性原则[J].吉林大学学报(理学版),2006,44(3):351-356. 被引量:4
  • 3刘锡平,贾梅,葛渭高.p-Laplace算子方程三点边值问题单调正解的存在性[J].吉林大学学报(理学版),2007,45(1):49-55. 被引量:10
  • 4Anuradha V, Maya C, Shivaji R. Positive solutions of a class of nonlinear bounded value-problem with NeumannRobin boundary conditions[J]. Math Anal Appl, 1999, 236: 94-124.
  • 5Miciano A R, Shivaji R. Multiple positive solutions for class of semipostone Neumann two point boundary value problems[J]. Math Anal Appl, 1993, 178: 102-115.
  • 6Leggett R W, Williams L R. Multiple positive fixed-points of nonlinear operators on ordered Banach spaces[J].Indiana Univ Math J, 1979, 28: 673-688.
  • 7郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2002.193~194
  • 8LU Hai-shen, O' Began Donal, ZHONG Cheng-kui. Multiple Positive Solutions for the One-dimensinal Singular p-Laplacian [ J]. Applied Mathematics and Computation, 2002, 133 : 407-422.
  • 9CHEUNG Wing-sum, BEN Jing-li. On the Existence of Periodic. Solutions for p-Laplacian Generatized Lienard Equation[J]. Nonlinear Analysis, 2005, 60: 65-75.
  • 10Garcid-Huidobro M, Gupta C P, Manasevich R. An m-Point Boundary Value Problem of Neumann Type for a p-Laplaeian Like Operator [ J ]. Nonlinear Analysis, 2004, 56: 1071-1089.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部