期刊文献+

真菌铜离子内稳态(homeostasis)调节的多样性 被引量:2

Regulations diversity of fungal copper homeostasis-A review
原文传递
导出
摘要 铜是生物体中必需的微量元素之一,作为多种氧化酶的辅助因子参与不同的生物反应,对于维持生命活动起到重要的作用。但在过量的情况下,无论是一价铜离子还是二价铜离子对于生物体都具有很强的细胞毒性,因此铜的代谢是受细胞严格调控的。以酿酒酵母(Saccharomyces cerevisiae)为模式生物对铜代谢的研究已取得了很大进展,对其它高等生物体内铜代谢及其重要生理功能提供了重要信息。本文对酿酒酵母中铜离子的吸收、转运以及在细胞内的代谢调控的新进展进行了归纳,并结合自己的研究综述了真菌铜代谢调节的共性与差异。 Copper is an essential trace element in all organisms and serves as a catalytic cofactor for many biological processes in cells. Yet excess cuprous and cupric forms can be high toxic to the cells. Thus cells must have developed diverse mechanisms to control the uptake and distribution of copper. Much are known about the copper metabolism in Saccharomyces cerevisiae and a few other fungi. In this review, we focus on the recent research in copper uptake, transport and distribution in model organism baker's yeast Saccharomyces cerevisiae, as well as the new frontier in other fungi, e. g. the novel roles of copper in the pathogenesis of the fungal pathogen Cryptococcus neoformans.
出处 《微生物学报》 CAS CSCD 北大核心 2009年第7期841-847,共7页 Acta Microbiologica Sinica
基金 国家自然科学基金(30570027)~~
关键词 Cu/Zn超氧化物歧化酶 铜伴侣蛋白 酿酒酵母 漆酶 copper Cu/Zn SOD copper chaperone proteins Saccharomyces cerevisiae laccase
  • 相关文献

参考文献37

  • 1Gambling L, Andersen HS, McArdle HJ. Iron and copper, and their interactions during development. Biochemical Society Transactions ,2008,36(6):1258- 1261.
  • 2Georgatsou E, Mavrogiannis LA, Fragiadakis GS, et al. The yeast Frelp/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Maclp activator. Journal of Biological Chemistry, 1997,272 ( 21 ) : 13786 - 13792.
  • 3Dancis A, Klausner RD, Hinnebusch AG, et al. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1990,10(5) :2294 - 2301.
  • 4Georgatsou E, Alexandraki D. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae . Molecular and Cellular Biology, 1994,14(5) :3065 - 3073.
  • 5Shi X, Stoj C, Romeo A, et al. Frelp Cu^2+ reduction and Fet3p Cu^1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003,278(50) :50309 - 50315.
  • 6De Freitas JM, Kim JH, Poynton H, et al. Exploratory and confirmatory gene expression profiling of macl Delta. Journal of Biological Chemistry, 2004, 279 ( 6 ) : 4450 - 4458.
  • 7Rees EM, Thiele DJ. Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization. Journal of Biological Chemistry, 2007, 282(30) :21629 - 21638.
  • 8Nyhus K J, Jacobson ES. Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans . Infection and Immunity, 1999,67(5) :2357 - 2365.
  • 9Dancis A, Yuan DS, Haile D, et al. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell, 1994,76(2) :393 - 402.
  • 10Pena MM, Puig S, Thiele DJ. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. Journal of Biological Chemistry, 2000, 275 (43): 33244 - 33251.

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部