期刊文献+

分层神经网络在入侵检测系统中的应用 被引量:1

Intrusion detection based on hierarchical neural network
下载PDF
导出
摘要 入侵检测技术是提高网络安全的重要手段之一,旨在利用分层神经网络解决入侵检测问题。针对入侵检测研究的通用审计数据集,首先将数据进行预处理以便运算;其次利用RBF网络实现粗检测;再次利用Elman BP网络进行细检测,从而实现分层神经网络的入侵检测;最后在MATLAB平台下进行仿真实验,仿真结果表明,分层神经网络结构在入侵检测中体现出良好的特性。 Intrusion detection is one of important ways to improve network security,and is a main research topic in computer field.The benchmark dataset commonly used in the research of intrusion detection is adopted.Firstly,data are changed into the appropriate type for simulations;Secondly RBF network is used for raw detection;Thirdly Elman BP network is used for advanced detection;Lastly a lot of simulation results are gained from MATLAB platform,and display that hierarchical network is fit for intrusion detection.
作者 毕靖 张琨
出处 《计算机工程与应用》 CSCD 北大核心 2009年第20期106-107,178,共3页 Computer Engineering and Applications
基金 北京市教委科技计划面上项目 河北工业大学博士启动基金~~
关键词 分层神经网络 入侵检测 网络安全 hierarchical network intrusion detection network security
  • 相关文献

参考文献4

  • 1Ye Nong,Li Xiang-yang,Chen Qiang,et al.Probabilistic techniques for intrusion detection based on computer audit data [J].IEEE Transactions on Systems,Man and Cybernetics-Part A:Systems and Humans, 2001,31 (4) : 266-274.
  • 2Kddcup99 dataset,corrected.gz.http://kdd.ics.uci.edu/databases/kddcup99/ kddcup99.html.
  • 3Zhang Chun-lin,Jiang Ju,Kamel M.Intrusion detection using hierarchical neural networks[J].Pattern Recognition,2005,26(6):779-791.
  • 4张琨,毕靖.基于RBF网络的入侵检测技术[J].计算机工程与应用,2008,44(24):106-108. 被引量:1

二级参考文献7

  • 1危胜军,胡昌振,高秀峰.基于学习Petri网的网络入侵检测方法[J].兵工学报,2006,27(2):269-272. 被引量:5
  • 2Ye N,Li X Y,Chen Q,et al.Probabilistic techniques for intrusion detection based on computer audit data[J].IEEE Transaction on Systems, Man, and Cybemetics-Part A : Systems and Humans, 2001, 31(4):266-274.
  • 3Morteza A,Rasool J,Hamid R.SRT-UNNID:a practical solution to real-time network-based intrusion detection using unsupervised neural networks[J].Computers and Security, 2006,25 (6) : 459-468.
  • 4Tadeusz P,Axel T.Data mining and machine learning-towards reducing false positives in intrusion detection[J].Information Security Technical Report, 2005,10(3 ) : 169-183.
  • 5corrected.gz [DB/OL].http ://kdd.ics.uci.edu/databases/kddcup99/kd- dcup99.html.
  • 6王春枝,金伟健.基于危险理论与数理统计的入侵检测模型[J].计算机工程与应用,2008,44(11):136-138. 被引量:8
  • 7凌军,曹阳,尹建华,卢勇,黄天锡.一种实时入侵检测专家系统的设计与实现[J].计算机工程与应用,2002,38(9):9-10. 被引量:5

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部