期刊文献+

改进的一分类支持向量机的邮件过滤研究 被引量:2

Filtering e-mail based on improved One-class Support Vector Machine
下载PDF
导出
摘要 服务器端存在多个用户,且人们对邮件内容的理解和认可程度不同,因此邮件过滤中涉及到不确定信息的处理。就邮件内容来看,邮件过滤通常涉及到隐私,不利于大量收集样本并评价打分。因此提出了一种基于改进的一分类支持向量机的邮件过滤方法。该方法优点在于:(1)用户只需为不确定性很强的待区分邮件给出隶属度;(2)只需收集和训练一类邮件样本,便可以建立邮件分类模型;(3)把隶属度首次引入到1-SVM中,并且由隶属度的值的大小来确定惩罚因子的值。通过仿真实验验证了该方法的有效性。 Because there are many users in server,and users have different understand or admitting degrees for the content of e-mails,uncertain information processing is dealt with in filtering e-mails.From the content of e-mails point of view,filtering e-mails always deals with privacy,this is disadvantage for largely collecting e-mails and evaluating them.Filtering e-mail based on improved one-class SVM is proposed,the advantages of the method are(1)users only give membership degrees for uncertain e-mails which will be dealt with;(2)classing e-mails model is constructed by a kind of e-mail samples;(3)membership degrees are discussed in one-class SVM,and membership degrees are also used to decide punish factors.Simulation shows that the method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第20期151-153,168,共4页 Computer Engineering and Applications
基金 四川省重大科技专项项目(No.2008GZ0118) 四川省杰出青年基金(No.06ZQ026-037)
关键词 一分类支持向量机 邮件过滤 隶属度 不确定性 有序加权平均算子 One-class Support Vector Machine (1-SVM) e-mail filtering membership degree uncertainty Ordered Weighted Avcraging(OWA) operator
  • 相关文献

参考文献3

二级参考文献54

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 3南丽丽.垃圾邮件过滤方法浅析[J].运城学院学报,2005,23(5):60-61. 被引量:3
  • 4M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001.
  • 5N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm[J]. Machine Learning, 2(4) :285- 318, 1988[J].
  • 6R. Krishnamurthy and C. Orasan, A corpus-based investigation of junk emails[A]. In: Proceedings of Language Resources and Evaluation Conference (LREC 2002)[C]. Las Palmas de Gran Canaria, Spain, pp. 1773- 1780,May 2002.
  • 7M. Sahami, S. Dumais, D. Heckerman and E. Horvitz, A Bayesian approach to filtering junk e-mail[A]. In:Proc. of AAAI Workshop on Learning for Text Categorization[C]. pp. 55-62, 1998.
  • 8W. Cohen, Fast effective rule induction[A]. In: Machine Learning Proceedings of the Twelfth International Conference[C]. Lake Taho, California, Mongan Kanfmann, pp. 115-123, 1995.
  • 9W. Cohen, Learning rules that classify email[A]. In: Proceedings of the AAAI spring symposium of Machine Learning in Information Access, Palo Alto[C]. California, pp. 18 - 25. 1996.
  • 10X. Carreras and L. Marquez, Boosting Trees for Anti-Spam Email Filtering[A]. In: Proceedings of Euro Conference Recent Advances in NLP (RANLP-2001)[C]. pp. 58-64, Sep. 2001.

共引文献129

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部