期刊文献+

基于Seed集的半监督核聚类 被引量:2

Semi-supervised kernel clustering algorithm based on seed set
下载PDF
导出
摘要 提出了一种新的半监督核聚类算法——SKK-均值算法。算法利用一定数量的标记样本构成seed集,作为监督信息来初始化K-均值算法的聚类中心,引导聚类过程并约束数据划分;同时还采用了核方法把输入数据映射到高维特征空间,并用核函数来实现样本之间的距离计算。在UCI数据集上进行了数值实验,并与K-均值算法和核-K-均值算法进行了比较。 This paper presents a novel semi-supervised kernel clustering algorithm called Seed Kernel K-Means(SKK-Means) algorithm.It uses labeled data to generate initial seed clusters to guide the clustering process and data partition,and uses kernel method to map the input data into a high-dimensional feature space and calculates the distance between data points with a kernel function.The algorithm is compared with the other clustering algorithms such as K-Means and Kernel K-Means,on UCI databases in some numeric experiment.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第20期154-157,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60873100 河北省科技支撑计划项目No.072135188 河北省教育厅科研计划项目No.2008312~~
关键词 半监督聚类 SEED 核方法 K-均值 semi-supervised clustering seed set kernel method K-means
  • 相关文献

参考文献10

  • 1Zhu X J.Semi-supervised learning literature survey,Technical Report 1530[R].Department of Computer Sciences,University of Wisconsin at Madison, Madison, WI, December, 2007.
  • 2李昆仑,张伟,代运娜.基于Tri-training的半监督SVM[J].计算机工程与应用,2009,45(22):103-106. 被引量:15
  • 3Li Kun-lun,Zhang Wei,Ma Xiao-tao,et al.A novel semi-supervised SVM based on tri-training[C]//IITA 2008.
  • 4Basu S,Banerjee A,Mooney R.Semi-supervised clustering by seeding[C]//Intemational Conference on Machine Learning,2002:19-26.
  • 5Filippone M,Camastra F,Masulli F,et al.A survey of kernel and spectral methods for clustering[J].Pattem Recognition, 2008,41 : 176-190.
  • 6Kulis B,Basu S,Dhillon I S,et al.Semi-supervised graph clustering: A kernel approach[C]//Proceedings of the 22nd International Conference on Machine Learning,ICML'05.New York,NY,USA ACM Press, 2005 : 457-464.
  • 7Girolami M.Mercer kernel-based clustering in feature space[J]. 1EEE Transactions on Neural Networks,2002,13(3):780-784.
  • 8Camastra F,Verri A.A novel kernel method for clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):801-805.
  • 9Dempster A P,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].J Royal Statistical Soc, 1977,39(1 ) : 1-38.
  • 10UCI repository of machine learning databases.http://www.ics.uci.edu/ mlearn/MLRepository.html.

二级参考文献3

共引文献14

同被引文献28

  • 1杜奕,卢德唐,李道伦,查文舒.基于层次聚类的时间序列在线划分算法[J].模式识别与人工智能,2007,20(3):415-420. 被引量:8
  • 2黄书剑.时序数据上的数据挖掘.软件学报,2004,15(1):1-7.
  • 3Wagstaff K, Cardie C, Rogers S, et al.Constrained K-means clus- tering with background knowledge[C]//Proceedings of the 18th International Conference on Machine Learning, San Francisco.CA, USA: Morgan KaufMann Publishers Inc., 2001 : 577-584.
  • 4Bezdek J C.Pattem recognition with objective function algo- rithms[M].New York: Plenum Press, 1981.
  • 5Alcock R.UCI repository of machine learning database[EB/OL]. ( 1999-06-08).http ://archive.ics.uci.edu/ml/datasets.html.
  • 6王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 7SAMARATI P, SWEENEY L. Generalizing data to provide anonymity when disclosing information[Z] Proc of the 17th ACM SIGMOD SIGACT SIGART Symposium, New York,ACM, 1998.
  • 8AGGARWAL G, FEDER T, KENTHAPADI K, et al. Achieving anonymity via clustering[Z] Proe of the 25th ACM SIGMOD-SIGACT-SIGART Symp, New York, ACM, 2006.
  • 9MEYERSON A, WILLIAMS R. On the complexity of optimal k-anonymity[Z]. Proc of the 23rd ACMSIGACT-SIG- MOD-SIGART Symp, New York, ACM, 2004.
  • 10IYENGAR V. Transforming data to satisfy privacy constraints[Z]. Proc of the 8th ACM SIGKDD Int'l Conference, New York: ACM, 2002.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部