期刊文献+

改进的快速相关矢量量化的图像编码算法 被引量:1

Image coding algorithm based on modified fast correlation vector quantization
下载PDF
导出
摘要 在矢量量化中,保证编码质量的前提下,缩短编码时间和降低码率是当前研究的重要问题。快速码字搜索算法是减少编码时间的重要技术。提出了一种改进的哈达玛变换域等均值等方差最近邻搜索算法(MHTEENNS)。测试结果表明,这种算法能够排除更多的码字,效率更高。为了降低码率和进一步缩短编码时间,目前已有相关矢量量化的图像编码算法,但是这种算法造成编码质量的下降。提出了改进的基于对角线相关矢量量化编码算法(MDFCVQ)。该算法编码质量提高了0.8~0.9dB且码率进一步降低。最后,将快速码字搜索算法应用到相关矢量量化中来,将两种改进后的技术结合在一起,通过与之前的方法比较,提出一种在保证编码时间的前提下,具有更高编码质量和更低码率的矢量量化算法。 On the basis of high coding quality,reducing encoding time and cutting down bit rates are the important problems of current research in vector quantization.Fast codeword search algorithm is an important technology to reduce encoding time.This paper presents a Modified Hadamard-Transform based Equal-average Equal-variance Nearest Neighbor Search algorithm(MHTEENNS).The experiment shows that this algorithm can exclude more codeword and is more efficient.In order to reduce bit rates,and reduce more encoding time,fast correlation vector quantization algorithm is presented,but coding quality is declined.This paper presents a Modified Diagonal based Fast Correlation Vector Quantization algorithm(MDFCVQ).The experiment shows that the algorithm can improve the quality by 0.8~0.9 dB and reduce bit rates.Finally,this paper combines fast codeword search algorithm and correlation vector quantization.Compared with previous algorithm,a new algorithm is presented,which has higher quality and lower bit rates.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第20期186-191,共6页 Computer Engineering and Applications
关键词 矢量量化 码字搜索 快速相关 相关预测 图像编码 Vector Quantization(VQ ) codeword search fast correlation correlation predictive image coding
  • 相关文献

参考文献12

  • 1Gray R M.Vector quantization[J].IEEE ASSP Magazine,1984,1(2): 4-29.
  • 2Linde Y,Buzo A,Gray R M.An algorithm for vector quantizer design[J].IEEE Transactions on Communication,1980,28(1):84-95.
  • 3Gersho A,Gray R M.Vector quantization and signal compression[M]. Boston:Kluwer Academic Publishers, 1992.
  • 4Bei C D,Gray R M.An improvement of the minimum distortion eneoding algorithm for vector quantization[J].IEEE Transactions on Communications, 1985,33(10) : 1132-1133.
  • 5Guan L,Kamel M.Equal-average hyperplane partitioning method for vector quantization of image data[J].Pattem Recognition Letters, 1992,13(10) :693-699.
  • 6Lee C H,Chen L H.Fast closest codeword search algorithms for vector quantisation[J].IEEE Proceedings-Vision,Image and Signal Processing, 1994,141 ( 3 ) : 143-148.
  • 7Baek S J,Jeon B K,Sung K M.A fast encoding algorithm for vector quantization[J].IEEE Signal Processing Letters,1997,g(12): 325-327.
  • 8Lu Z M,Pan J S,Sun S H.Efficient codeword search algorithm based on Hadamard transform[J].Electronics Letters,2000,36(16): 1364-1365.
  • 9姜守达,陆哲明,裴慧.哈德码变换域等均值等方差最近邻矢量量化码字搜索算法[J].电子学报,2004,32(9):1543-1545. 被引量:11
  • 10王卫,蔡德钧,万发贯.用于图像编码的相关矢量量化研究[J].电子学报,1995,23(4):30-34. 被引量:13

二级参考文献26

  • 1王卫,蔡德钧,万发贯.用于图像编码的相关矢量量化研究[J].电子学报,1995,23(4):30-34. 被引量:13
  • 2周汀,闵昊,章倩苓.一种矢量量化编码的加速算法[J].电子学报,1997,25(4):95-98. 被引量:6
  • 31,Linde Y, Buzo A, Gray R M. An algorithm for vector quantizer design. IEEE Trans. on Commun.,1980,28(1):84~95
  • 42,Gersho A, Gray R M. Vector quantization and signal compression. Boston,MA: Kluwer,1992.
  • 53,Bei C D, Gray R M. An improvement on minimum distortion encoding algorithm for vector quantization. IEEE Trans. on Commun, 1985,33(10):1132~1133.
  • 64,Torres T, Huguet J. An improvement on codebook search for vector quantization. IEEE Trans. on Commun, 1994,42(2):208~210.
  • 75,Soleymani M R, Morgera S D. An efficient nearest neighbor search method. IEEE Trans. on Commun, 1987,35(4):677~679.
  • 86,Lee C H, Chen L H. High-speed closest codeword search algorithms for vector quantization. Signal Processing, 1995,43:323~331.
  • 98,Ramasubramanian V, Paliwal K K. Fast k-dimensional tree algorithms for nearest-neighbor search with application to vector quantization encoding. IEEE Trans. Signal Process, 1992,40(3):518~531.
  • 109,Kim T. Side match and overlap match vector quantizers for images. IEEE Trans. Image Processing,1992,(1):170~185.

共引文献29

同被引文献12

  • 1段勇,徐心和,崔宝侠.改进的SOFM及其在矢量量化中的应用[J].系统仿真学报,2006,18(3):718-721. 被引量:7
  • 2Peng J, Williams R J. Incremental multi-step Q-learning. In: Proceedings of the llth International Conference. New Brunswick, NJ, USA,1994,226-232.
  • 3Ma X L, Konstantin K L. Global reinforcement learning in neural networks. IEEE Transactions on Networks, 2007, 18 (2) : 573-577.
  • 4Tan A H, L N, Xiao D. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback. IEEE Transactions on Networks, 2008, 19(2) : 230-244.
  • 5Moore A, Atkeson C. The patti-game algorithm for variable resolution reinforcement learning in multidimensional statespaces. Machine Learning, 1995, 21 ( 1 ) : 199-233.
  • 6Munos R, Moore A. Variable resolution discretization for high-accuracy solutions of optimal control problems. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 1999, 1248-1355.
  • 7Reynolds S I. Adaptive resolution model-free reinforcement learning: decision boundary partitioning. In: Proceedings of the 17th International Conference on Machine Learning, San Francisco, USA, 2000. 783-790.
  • 8Hajime M, Shinzo K. Q-Learning with adaptive state segmentation (QLASS). In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Amsterdam, The Netherlands, 1997. 179-184.
  • 9Duan Y, Cui B X, Xu X H. State space partition for reinforcement learning based on fuzzy min-max neural network. Lecture Notes in Computer Schence, 2007, 4492( 1): 160-169.
  • 10张汝波.强化学习理论及应用.哈尔滨:哈尔滨工程大学出版社,2000.188-189.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部