期刊文献+

应用GA-SVM的渭河水质参数多光谱遥感反演 被引量:22

Apply GA-SVM to retrieve water quality parameters of Weihe River from multispectral remote sensing data
下载PDF
导出
摘要 建立了基于支持向量机的遥感水质参数反演模型,构建了基于浮点数编码的遗传算法优选模型参数。以渭河为研究对象,基于高分辨率多光谱遥感SPOT-5数据和水质实地监测数据,分别建立了一元和多元经验模型进行渭河水质参数的反演。在样本数目有限的情况下,提出的GA-SVM方法的反演结果比神经网络和传统的统计回归方法好,且各方法的多元回归结果均好于一元回归的结果。SVM具有强的非线性映射能力,适合小样本情况,由GA实现了模型参数的自动优选,使GA-SVM用于解决回归问题表现出优势。将机器学习和全局优化智能计算方法引入,GA-SVM为渭河陕西段的水环境遥感监测提供了一种新方法,取得了较好的反演结果。 This paper establishes the retrieving models of water quality parameters by remote sensing based on support vector machine (SVM), and proposes a self-adaptive optimization algorithm for the selection of SVM model parameters using genetic algorithm (GA). Using high resolution multispectral SPOT-5 data and in situ measurements, we construct univariate and multivariate empirical models for retrieving water quality parameters of Weihe River in Shaanxi province. The capability of the proposed GA-SVM method is obviously better than the neuron networks and the traditional statistical regression methods even for limited samples. And the results of multivariate models are always better than that of univariate models for these methods. Since SVM has the ability of non-linear mapping, fitting for small samples, and the model parameters are selected automatically by GA, GA-SVM method shows distinct superiority in solving our problems. By introducing the new method of machine learning and intelligent computing method for global optimization, GA-SVM provides a new approach for water quality monitoring by remote sensing, and can obtain better results for Weihe River in Shaanxi.
出处 《遥感学报》 EI CSCD 北大核心 2009年第4期735-744,共10页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:40671133)资助
关键词 支持向量机 遗传算法 水质参数 反演 渭河 SPOT-5 support vector machine, genetic algorithm, water quality parameters, retrieving, Weihe river, SPOT-5
  • 相关文献

参考文献5

二级参考文献48

  • 1李旭文,季耿善,杨静.苏州运河水质的TM分析[J].环境遥感,1993,8(1):36-44. 被引量:19
  • 2陈楚群,施平,毛庆文.应用TM数据估算沿岸海水表层时绿素浓度模型研究[J].环境遥感,1996,11(3):168-176. 被引量:66
  • 3[2]Claudia Giardino, Monica Pepe. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. The Science of the Total Environment,2001, 268: 19~29.
  • 4[4]Richter R A. Fast atmospheric correction algorithm applied to Landsat TM Images. Int. J. Remote Sens. , 1990, 11:159~ 166.
  • 5[5]Richter R A. Spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. , 1996, 17: 1201~ 1214.
  • 6林志贵 徐立中 黄凤辰.水质遥感图像与地面监测数据融合处理方法[A]..中国电子与信息工程学术年会论文集(2004)A卷[C].北京,2004.47-55.
  • 7章孝灿 黄智才 赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社,2003.57-60.
  • 8Zilioli E, Brivio P A. The Satellite Derived Optical Information for the Comparative Assessment of Lacustrine Water Quality[J].The Science of the Total Environment, 1997, 196 : 229-245.
  • 9Iwashita K, Kudoh K, Fujii H, et al. Satellite Analysis for Water Flow of Lake Inbanuma [ J ]. Advances in Space Research,2004, 33: 284-289.
  • 10Dhruba Pikha Shrestha, Alfred Zinck. Land Use Classification in Mountainous Areas: Integration of Image Processing, Digital Elevation Data and Field Knowledge [ J ]. JAG, 2001, 3 : 78-85.

共引文献153

同被引文献270

引证文献22

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部