期刊文献+

基于峭度的独立分量逐次提取梯度算法

Gradient Algorithm for Sequential Extraction of Independent Component Based on Kurtosis
下载PDF
导出
摘要 独立分量分析是一种有效的盲源分离和特征提取技术,在许多领域已获得成功应用。结合快速固定点算法和极大似然自然梯度算法的特点,提出了一种基于峭度的独立分量逐次提取梯度算法,编制了相应的计算程序,并设计仿真试验,试验结果表明,在信源满足独立分量分析的前提条件时,该算法具有较好的收敛性能,且分离效果较好。 Independent component analysis is an effective technology for blind source separation and feature extraction, and has been successfully applied to a wide range of researches. Firstly, the principle and realization of independent component analysis are briefly introduced in the paper. Then we put forward a gradient algorithm for sequential extraction of independent component based on kurtosis. The algorithm integrates the merits of the fast fixed- point algorithm and the natural gradient algorithm based on maximum likelihood estimation. We compile the corresponding calculation program and conduct a simulation experiment. The results have shown that this algorithm has good convergence and separation effect when the source signals could meet with the prerequisite for independent component analysis.
作者 崔群凤
出处 《武汉职业技术学院学报》 2009年第3期78-81,共4页 Journal of Wuhan Polytechnic
关键词 独立分量分析 峭度 逐次提取 梯度算法 盲源分离 independent component analysis (ICA) kurtosis sequential extraction gradient algorithm blind source separation (BSS)
  • 相关文献

参考文献1

二级参考文献7

  • 1Comon P. Independent Component Analysis-a New Concept? [J]. Signal Processing , 1994,36: 287- 314.
  • 2Bell A J, Sejnowski T J. An Information-Maximisation Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6): 10004-1034.
  • 3Hyvarinen A, Oja E. A Fast Fixed-Point Algorithm for Independent Component Analysis[J]. Neural Computation, 1997,9(7) : 1483- 1492.
  • 4Amari S L, Cichocki A, Yang H. A New Learnig Algorithm for Blind Source Separation[J]. Advances in Neural Information Processing Systems, 1996, 8:757 - 763.
  • 5HAN Jiye, L IU Guanghui, YIN Hongxia. Convergence Properties of Conjugate Gradient Methods with Strong Wolfe Line Search[J]. Syst Sci Math Sci, 2000, 11(2) : 112- 116.
  • 6Hyvarinen A. Survey on Independent Component Analysis[J]. Neural Computing Surveys,2001,2:94- 128.
  • 7Fu Z, Dowling E M. Conjugate Gradient Eigenstructure Tracking for Adaptive Spectral Estimation[J]. IEEE Trans. Signal Processing, 1995,43.512 - 516.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部