摘要
对基于支持向量机的多类分类故障诊断方法进行了研究。采用9频段幅值谱作为分类器的特征输入,比较了现有常用的几种支持向量机多分类方法:"一对一"法、"一对多"法、导向无环图法,试验结果表明导向无环图法耗时短、分类精度更高,更适合应用于机械多分类故障诊断研究。
This paper studies multi-class problem of machine fault diagnosis based on vector machine. 9 segments of frequency spectrum is used as the input of SVM multiple classifier Three existing multi-class methods of SVM: "one-vs-one", "one-vs-all", Directed Acyclic Graph (DAG) is compared to test. Cross validation is use to optimize the parameters of SVM. The result indicates that DAGSVM has fewer time resume and higher classification precision than the other methods.
出处
《机械管理开发》
2009年第4期8-10,13,共4页
Mechanical Management and Development
关键词
故障诊断
支持向量
多类分类
Fault Diagnosis
Support Vector Machine
Multiple classifications