期刊文献+

具有Monod-Haldane功能反应和脉冲效应的捕食系统的动力学性质 被引量:1

Dynamics of a Predator-prey System with Monod-Haldane Function and Impulsive Effect
下载PDF
导出
摘要 基于综合害虫防治,对具脉冲效应的Monod-Haldane功能反应的捕食系统进行了分析,根据Floquet乘子理论,获得了害虫灭绝周期解全局渐近稳定与系统持续生存的条件.并讨论了害虫灭绝周期解附近分支出非平凡周期解的问题,且文章利用Matlab软件对害虫灭绝周期解害虫周期爆发现象进行了数值模拟. The predator prey with Impulsive effect and Monod-Haldane function concerning pest management is analyzed. By using Floquet thereto, we obtain the condition that determined global asymptotic stability of pest-erdieation periodic solution and permanence. The question of the nontrivial periodic solution off the round of pest-eradication periodic solution is discussed and the phenomenon of the pest-eradication periodic solution and the periodic outburst of pest are simulated by Matlab.
机构地区 南昌大学数学系
出处 《应用泛函分析学报》 CSCD 2009年第2期140-146,共7页 Acta Analysis Functionalis Applicata
基金 江西省自然科学基金(0611084)
关键词 脉冲效应 非单调功能反应 全局渐近稳定 分支 灭绝 持续生存 impulsive effect nonmontotonic function response, global asymptotic stable bifurcation erdication permanence
  • 相关文献

参考文献8

  • 1Zhang Shuwen,Chen Lansun.A Holling Ⅱ functional response food chain model with impulsive perturbations[J].Chaos,Solitons and Fractals,2005,24:1269-1278.
  • 2张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 3Andrews J F.A mathematical model for the continuous culcure of microorganisms utilizing inhibitory substrates[J].Biotechnol Bioeng,1968,10:707-723.
  • 4Sokol W,Howell L A.Kinetics of phenol oxidation by washed cells[J].Biotechnol Bioeng,1980,23:2039-2049.
  • 5Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:world Scientific,1989.
  • 6Bainov D D,Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Applications[M].England:Longman,1993.
  • 7Lalmeche A,Arino O.Bifurcation of nontrivial periodic solutions of impulsive differential equations aresing chemotherapeutic treatment,dynamics of continuous[J].Discrete and Impulsive Systems,2000,7:265-287.
  • 8朱慧,熊佐亮.一类具有非线性传染率和脉冲接种的SIV传染病模型[J].南昌大学学报(工科版),2007,29(1):58-61. 被引量:5

二级参考文献26

  • 1王拉娣.一类带有非线性传染率的SIRS传染病模型[J].华北工学院学报,2005,26(1):1-5. 被引量:5
  • 2孟晓伟,张勇,王建中.具有脉冲接种流行病模型的周期解稳定性[J].华北工学院学报,2005,26(4):239-242. 被引量:3
  • 3薛颖,熊佐亮.具有免疫接种且总人口规模变化的SIR传染病模型的稳定性[J].应用泛函分析学报,2007,9(2):169-175. 被引量:7
  • 4Pandit S G. On the stability of impulsively perturbed differential systems. Bull. Austral Math.Soc., 1977, 17: 423-432.
  • 5Simeonov P S, Bainov D D. The second method of Liapunov for systems with impulsive effect.Tamkang J. Math., 1985, 16: 19-40.
  • 6Kulev G K, Bainov D D. On the asymptotic stability of systems with impulses by direct method of Lyapunov. J. Math. Anal. Appl., 1989, 140: 324-340.
  • 7Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses.Math. Biosci., 1998, 149: 23-36.
  • 8Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull. Math.Biol., 1998, 60: 1-26.
  • 9Hirstova S G, Bainov D D. Existence of periodic solution of nonlinear systems of differential equations with impulsive effect. J. Math. Anal. Appl., 1985, 125: 192-202.
  • 10Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math. Comprt. Modelling, 1997, 26: 59-72.

共引文献33

同被引文献11

  • 1LI Y,GAO H. Existence, Uniqueness and Global As- ymptotic Stability of Positive Solutions of a Predatorp-rey System with Holling II Functional Responsewith Random Perturbation [J]. Nonlinear Analysis, 2008, 68:1694-1705.
  • 2LI S Y,XIONG Z L,WANG X. The Study of a Preda- tor-prey System with Group Defense and Impulsive Control Strategy[J]. Applied Mathematical Modelling, 2010,34 : 2546-2561.
  • 3PATHAK Sweta, MAITI Alakes, SAMANTA G P. Rich Dynamics of a Food Chain Model with Hassell- Varley Type Functional Responses[J]. Applied Mathe- matics and Computation, 2009,208 : 303-317.
  • 4JI C Y,JIANG D Q,LI X Y. Qualitative Analysis of a Stochastic Ratio-dependent Predator-prey System[J]. Journal of Computational and Applied Mathematics, 2011,235:1326-1341.
  • 5LIU M,WANG K. Persistence and Extinction in Sto- chastic Non-autonomous Logistic Systems[J]. J Math Anal Appl,2011 ,375:443-457.
  • 6ARNOLD L. Stochastic Differential Equations:Theory and Applications[M]. New York:Wiley, 1972.
  • 7MAO X. Stochastic Differential Equations and Applica- tions[M]. New York: Horwood, 1997.
  • 8CHEN L, CHEN J. Nonlinear Biological Dynamical System[M]. Beijing: Science Press, 1993.
  • 9JI C,JIANG D, Shi N. Analysis of a Predator-prey Model with Modified Leslie-Gower and Holling-type II Schemes with Stochastic Perturbation [J]. J Math Anal Appl, 2009,359 : 482-498.
  • 10HIGHAM D J. An Algorithmic Introduction to Nu- merical Simulation of Stochastic Differential Equations [J]. SIAM Rev, 2001,43,525-546.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部