摘要
利用矩阵的相似变换,研究了简单连通图的谱半径的可达下界,得到一个新的下界ρ(G)≥δ1+t-s+√(s+t-δ1)2+4s(δ2-t)/2,等号成立当且仅当G=~G1 G2,其中G1为n-i阶(δ1-s)-正则图,G2为i阶t-正则图。
By similar transformation of adjacent matrix, sharp lower bound of simple connective graphs spectral radius was studied. The new lower bound was gained as ρ(G)≥δ1+t-s+√(s+t-δ1)2+4s(δ2-t)/2,, which is true for equality and only when G=~G1 G2 where G1 is a (δ1-s)-regular graph of (n-i) power,G2 is a t-regular graph of power.
出处
《安徽理工大学学报(自然科学版)》
CAS
2009年第2期73-75,共3页
Journal of Anhui University of Science and Technology:Natural Science
关键词
谱半径
邻接矩阵
相似矩阵
特征值
spectral radius
adjacency matrix
similar matrix
eigenvalue