期刊文献+

图的谱半径的一些下界

Some Lower Bounds on the Spectral Radius of Graphs
下载PDF
导出
摘要 利用矩阵的相似变换,研究了简单连通图的谱半径的可达下界,得到一个新的下界ρ(G)≥δ1+t-s+√(s+t-δ1)2+4s(δ2-t)/2,等号成立当且仅当G=~G1 G2,其中G1为n-i阶(δ1-s)-正则图,G2为i阶t-正则图。 By similar transformation of adjacent matrix, sharp lower bound of simple connective graphs spectral radius was studied. The new lower bound was gained as ρ(G)≥δ1+t-s+√(s+t-δ1)2+4s(δ2-t)/2,, which is true for equality and only when G=~G1 G2 where G1 is a (δ1-s)-regular graph of (n-i) power,G2 is a t-regular graph of power.
作者 陈藏 仓定帮
出处 《安徽理工大学学报(自然科学版)》 CAS 2009年第2期73-75,共3页 Journal of Anhui University of Science and Technology:Natural Science
关键词 谱半径 邻接矩阵 相似矩阵 特征值 spectral radius adjacency matrix similar matrix eigenvalue
  • 相关文献

参考文献8

  • 1L COLLATZ,U SINOGOWITZ. Spektren Endlicher Grafen. Abh[J]. Math. Sem. Univ. Hamburg, 1957, 21:63-77.
  • 2HONG Y. On the spectral radius of unicyclie graph [J]. East China Norm. Univ. Natur. Sci. Ed. , 1986, 1:31-34.
  • 3O FAVARON, M MAHEO,J F SCALE. Some eignvalue properties in graphs (conjectures of Graffiti)[J]. Discrete Math. , 1993,111 : 197-220.
  • 4YUA M,LU M,TIAN F. On the spectral radius of graphs [J]. Linear Algebra and Appl, 2004, 387: 41-49.
  • 5R A BRUALDI,E S SOI.HEID. Some extremal problems concerning the square of a (0, 1) matrix [J]. Linear and Mihilin. Algebra, 1987. 22; 57-73.
  • 6HONG Y. Sharp upper and lower bound for largest eigenvalue of the laplacian matrix of trees[M]. Research Report, 2003 : 9.
  • 7XU Y, JIANG W X,CHEN C. Some lower bounds on the spectral radius of graphs[J]. Ars Combinatoria, 2007,84 : 281-292.
  • 8IIU B L,LAI H J. Combinatorial matrix theory[M]. Science Press, 1992: 33.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部