期刊文献+

M矩阵与其逆矩阵的Hadamard积最小特征值下界的研究 被引量:2

New Lower Bounds on Eigenvalue of the Hadamard Product of an M-matrix and Its Inverse
下载PDF
导出
摘要 关于M矩阵和它的逆矩阵的Hadamard积AA-1,我们给出AA-1最小特征值的新的下界,这些下界提高了Fiedler和Markham的猜想,同时也改进了文献[1]中的相应结果。 For the Hadamard product A . A^-1 of an M-matrix and its inverseA^-1 , we give new lower bounds for the minimum eigenvalue of A . A^-1 . These bounds improve the Conjecture of Fiedler and Markham, and improve the corresponding results of [ 1 ].
作者 李艳艳
出处 《四川理工学院学报(自然科学版)》 CAS 2009年第3期15-17,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 非负矩阵 M矩阵 HADAMARD积 下界 最小特征值 nonnegative M-matrix Hadamard product lower bounds minimum eigenvalue
  • 相关文献

参考文献6

  • 1Sinkorn R.A relationship between arbitary positive matrices and doubly stochastic mateices[J].Ann.Statist,1964,35:876-879.
  • 2Yong X R,Wang Z.Proof of a conjecture of Fiedler and Markham[J].Linear Algebra Appl.,2000,321:167-171.
  • 3Chen S C.Alower bound for the minimum eigenvalue the Hadamard product of matrices[J].Linear Algebra Appl.,2004,378:159-166.
  • 4Song Y Z.On an inequality for the Hadamard product of an M-matrix and its inverse[J].Linear Appl.,2000,305:99-105.
  • 5Fiedler M,Markham T L.An inequality for the Hadamard product of an M-matrix and inverseM-matrix[J].Linear Appl.,1988,101:235-237.
  • 6Li H B.Lower bounds for the eigenvalue of Hadamard product of an M-matrix and its inverse[J].Linear Appl.,2007,420:235-247.

同被引文献14

  • 1周平,赵慧.M-矩阵与M-矩阵的逆的Hadamard积的最小特征值下界的估计[J].四川理工学院学报(自然科学版),2011,24(6):729-732. 被引量:1
  • 2李春雨,邱道尹.计算机图形学理论与实践[M].北京:北京航空航天大学出版社,2005.
  • 3江涛.计算机绘图与辅助设计[M].上海:复旦大学出版社,1994.
  • 4Fiedler M,Markham T.An inequality for the Hadamard product of an M-matrix and inverse M-matrix[J] .Linear Algebra Appl,1988,101:1-8.
  • 5Yong Xuerong. Proof of a conjecture of Fiedler and Markham[J]. Linear Algebra Appl,2000,320:167-171.
  • 6Yong Xuerong, Wang Zheng.On a conjecture of Fiedler and Markham[J]. Linear Algebra Appl, 1999,288:259- 267.
  • 7Song Yongzhong. On an inequality for the Hadamard product of an M-matrix and its inverse [ J ]. Linear Algebra Appl,2000~305:99-105.
  • 8Chen Shencan. A lower bound for the minimum eigenvalue of the Hadamard product of matrices [ J ]. Linear Algebra Appl,2004,378:159-166.
  • 9LI Houbiao, Hung Tingzhu, Shen Shuqian, et al. Lower bounds for the minimum eigenvalue of Hadamardproduct of an M-maaix and its inverse [ J]. Linear Algebra Appl,2007,420:235-247.
  • 10LI Yaotang, Cheng Fubin, Wang Defeng. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse[J].Linear Algebra Appl,2009, 430:1423-1431.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部