摘要
研究一类非齐次A-调和方程的解的性质,给出一些满足方程A(x,g+du)=h+d*v的共轭A-调和张量的局部和全局的积分不等式。通过引入两类双权——Aλr(Ω)权和Ar(λ,Ω)权,借助于H lder不等式及双权的性质,将文献[7,引理2.4]推广成局部加双权形式。根据whitney-覆盖引理,将局部结果推广到全局范畴。结论中的参数使不等式更一般化,更加灵活、适用。
The properties of the solutions to a kind of the nonhomogeneous A - harmonic equations are studied. Some local and global weighted integral inequalities for the conjugate A - harmonic tensors satisfying the nonhomogeneous A - harmonic equation A (x ,g + du) = h + d^ * v are established. Ar^λ (Ω) - weight and Ar( λ ,Ω) -weight and their properties are introduced, and thereby, [ 7, Lemma 2.4 ] is generalized to the local two- weighted versions by using Holder inequality. At last, by Whitney -cover Lemma, these results are extended to the global case. The parameters in these obtained results make the inequalities more general and more flexible, so they can be used broadly.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2009年第3期320-324,共5页
Journal of Natural Science of Heilongjiang University
基金
Supported by Science Research Fund of HIT(HITC200709)
关键词
范数不等式
A-调和方程
微分形式
norm inequalities
A - harmonic equations
differential forms