摘要
用递归定义证明了“行列式相邻两行对调,其值变号”的性质,并根据这一性质推导出了行列式的按行展开法则及有关性质,从而简化了传统的推导方法.
In this paper, the property is proved that if two adjacent rows of the determinant are interchanged, the sign of the determinant is reversed. According to this property, we introduce a rule regarding to expand determinants by the row and some related properties. Thus the traditional method is simplified.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1998年第6期110-115,共6页
Journal of South China University of Technology(Natural Science Edition)
关键词
行列式
递归定义
展开法则
性质
determinant
recursive definition
expansion
property