摘要
设奇数n≥3存在原根,对任意整数1≤a<n且(n,a)=1,显然存在唯一的整数1≤a<n使得aa≡1(modn).如果a与a具有相反的奇偶性,定义数a为LehmerDH数.本文主要研究模n原根中LehmerDH数的分布性质、整除性质,给出了两个有趣的渐近公式.
? Let n≥3 be a odd number, and contains a primitive root, fot each 1≤a<n and (a,n)=1, it is clear that there exists one and only one 1≤a<n, such that aa≡1 ( mod n). The number is called as a lehmer DH number, if a and a are of opposite Parity. This paper studies the distribution properties and the divisibility of lehmer DH number, and gives two asymptotic formula.
出处
《纯粹数学与应用数学》
CSCD
1998年第2期88-90,共3页
Pure and Applied Mathematics
关键词
LEHMERDH数
原根
分布性质
整除性
Lehmer DH number
primitive root
distribution property
divisibility