摘要
在Cn空间中双球垒域上,建立具有全纯核的Cauchy型积分的含有边界立体角系数的Сохоцкиǔ-Plemelj公式.
Let D be a building domain of complex biballs in C n, L * be a function set which satisfies Lipschizt condition on D and can be continuously extended to D such that f∈C (1) (D) for all f∈L , the author defines a kind of the integral F(z) of Cauchy type with finite discrete holomorphic kernels Ω and establishes a more general Coxoкduǔ Plemelj formula which involves a solid angle coefficient α(t) at the point t∈D, i.e. F +(t)= V.P ∫ D fΩ+(1-α(t))f(t),0<α(t)<1. In particular, α(t)=12, for t is a smooth point of D.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第3期318-322,共5页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金
福建省自然科学基金
关键词
双球垒域
柯西型积分
边界性质
多复变数
Building domain of biballs, Integral of Cauchy type, Boudary behavior