摘要
设E是阿基米德Riesz空间,有弱单位元e和极大不相交系{ei:i∈I},其中每一个ei都是投影元素.由ei生成的主带记为B(ei).本文考虑如下论述:(a)存在完全正则Hausdorf空间X,使E是Riesz同构于C(X);(b)对每一个i∈I,存在一个完全正则Hausdorf空间Xi使B(ei)是Riesz同构于C(Xi).我们证明(a)可推出(b).但其逆在一般情况下不成立.当(b)成立时,我们得到一些与(a)等价的论述.
Let E be an Archimedean Riesz space possessing a weak unit e and a maximal disjoint system {e i :i∈ I} in which each e i is a projection element. The principal band generated by e i is denoted by B(e i). In this paper, consider the following statements: (a) there exists a completely regular Hausdorff space X such that E is Riesz isomorphic to C(X). (b) For every i∈ I there exists a completely regular Hausdorff space X i such that B(e i) is Riesz isomorphic to C(X i). We show that (a) implies (b). But the inverse is not true in general. Whenever (b) holds, we obtain some statements, each of which is equivalent to (a).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1998年第4期763-766,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
关键词
极大不相交系
RIESZ空间
表示理论
Weak unit, Maximal disjoint system,Projection element, Riesz homomorphism, Gelfand mapping