期刊文献+

赋范空间中Ф-半压缩型映象的不动点的迭代逼近 被引量:4

Iterative Approximation of Fixed Points for Nonlinear Mappings of Ф-Hemicootractive Type in Normed Linear Spaces
下载PDF
导出
摘要 使用赋范空间中一个不等式以及某些分析技巧,证明了赋范线性空间中中半压缩映象的不动点的迭代过程的若干收敛定理,改进和扩展了近期相应的一些结果. In the present paper, by virtue of an inequality and some analysis techniques, we have proved that some convergence theorems on the iterative process for nonlinear mappings of hemicontractive type in normed linear spaces. Our results improved and extend the corresponding those obtained by others recently.
出处 《应用数学》 CSCD 1998年第3期118-121,共4页 Mathematica Applicata
关键词 Φ-半压缩映象 不动点 赋范线性空间 迭代逼近 -hemicontractive mapping Ishikawa iterative process with errors Normed Linear space
  • 相关文献

参考文献1

  • 1Prof. Klaus Deimling. Zeros of accretive operators[J] 1974,Manuscripta Mathematica(4):365~374

同被引文献12

  • 1OSILIKE M O. Iterative solution of nonlinear equations of ψ-strongly accretive type [J ]. J Math Anal Appl, 1996,200:259-271.
  • 2DING Xie-ping. Iterative process with errors to nonlinear ψ-strongly accretive operator equations in arbitrary banach spaces [J]. Computers Math Appl, 1997,33(8) :75-82.
  • 3ZHOU Hai-jun,JIA Yu-ting. Approximating the zero of accretive operators by the ishikawa iterative process [J ]. Abstact and Appl Anal, 1996,1(2) : 153-167.
  • 4ZHOU Hai-jun. A note on a theorem of Xu and roach [J ]. J Amach Anal Appl, 1998,227:300-304.
  • 5CHIDUME C E,MOORE C. The solution by iterative of nonlinear equations in uniformly smooth Banach spaces [J ]. J Math Appl,1997,215: 132-146.
  • 6Osilike M.O. lterative Solution of Nonlinear Equations of the -strongly Accretive type[J]. J. Math. Anal.Appl. 1996,200:259-271.
  • 7Liu L. S. Ishikawa and Mann lterative Process with Errors for Ncnlinear Strongly Accretive Mappings in Banach Spaces[J], J. Math,Anal. Appl. 1995,194:114-125.
  • 8Chidume C. E. lterative Solutions of Nonlinear Equations in Smooth Banach Spaces[J]. Nonl. Anal. 1996,26:1823-1834.
  • 9Schu J. Iterative Construction of Fixed Points of Strictly Pseudocontractive Mappings[J]. Applicable Anal.1991,40:67-72.
  • 10Deimling K. Nonlinear Functional Analysis[M]. New York/Berlin:Springer - Verlag, 1985.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部