期刊文献+

基于多分类SVM的水泵故障诊断的研究 被引量:6

Fault Diagnosis of Pump Based-on Multi-class Support Vector Machines
下载PDF
导出
摘要 为了预测水泵在运行中的故障,提高水泵运行的安全性和经济性,在分析故障诊断的基本原理的基础上,建立了水泵运行故障知识库,并运用有向无环决策图多分类算法,对水泵故障样本进行训练,建立了基于支持向量机的离心式水泵运行故障诊断模型(DAGSVM)。通过实例验证表明,该模型能有效的诊断水泵的常见故障,为水泵故障诊断提供了一种新方法。 In order to forecast the faults of pump operation and enhance the security and efficiency, based on the analysis of the basic principle of fault diagnosis based on SVM, the fault knowledge database of pump operation is set up. Meanwhile, the multi-class algorithm of Decision Directed Acyclic Graph (DDAG) is applied for the training of pump faults samples, and the fault diagnosis model of centrifugal pump operation based on SVM is set up. In the end, the precision of the model is verified through an engineering example. The result of diagnosis shows that it is simple, practical and can diagnose the faults effectively.
出处 《节水灌溉》 北大核心 2009年第7期37-39,共3页 Water Saving Irrigation
基金 水利部"948"科技创新项目(CT200516) 辽宁省教育厅科技攻关项目(05L385)
关键词 支持向量机 水泵 故障诊断 support vector machines pump faults diagnosis
  • 相关文献

参考文献8

二级参考文献19

共引文献39

同被引文献39

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部