摘要
对于那些由代数微分方程描述的具有输入输出关系的非线性控制系统,本文采用两种方法讨论了其最小实现问题:一种方法是直接计算系统的特征列;另一种方法则采用了本原元定理.两种方法给出的最小实现所需的状态变量最小数目是相等的.
For those nonlinear control systems described by a set of algebraic differentialequations in input and output, two methods are used to discuss their minimal realizationproblems. One makes use of characteristic set to determine the order of a system, i.e. theminimal number of the states required. The other uses primitive element theorem and resolventtheory. By obtaining the minimal order and the minimal degree of an algebraic differentialpolynomial annuled by the primitive element, the minimal realization of the system can begiven. Some amount of manipulation can be completed by using mathematic mechanization.
出处
《系统科学与数学》
CSCD
北大核心
1998年第3期303-308,共6页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金
关键词
非线性控制系统
最小实现
控制系统
Minimal realization, characteristic set, resolvent, mathematic mechanization.