期刊文献+

中立型时滞差分方程解的渐近性 被引量:3

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DELAY DIFFERENCE EQUATIONS OF NEUTRAL TYPE
下载PDF
导出
摘要 给出了中立型时滞差分方程△(xn+pxn-k)+qnf(xn-m)=0(E)一切非振动解趋于零(n→∞)的充分条件,也证明了方程(E)一切解振动的两个新的定理. We give sufficient conditions for all nonoscillatory solutions of the neutral delay difference equation of the form △(x n+px n-k )+q nf(x n-m )=0( E ) to converge to zero as n→∞. Two new oscillation theorems for equation (E) are also proved.
出处 《纯粹数学与应用数学》 CSCD 1998年第2期65-70,共6页 Pure and Applied Mathematics
基金 陕西省教委专项科研资助
关键词 差分方程 中立型 时滞差分方程 渐近性 difference equation delay neutral type oscillation
  • 相关文献

参考文献10

  • 1R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York,1992.
  • 2L. H. Erhe and B.G.Zhang, Oscillation of discrete analogues of delay equations,Diff. Integral Equations, 2(1989),300-309.
  • 3D. A.Georgiou, E.A.Grove and G.Ladas, Oscillation of neutral difference equations with variable coefficients, Lecture Notes in Pure Appl. Math. 127,Dekker, New York,1991.
  • 4I.Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford Univ. Press, 1991.
  • 5G.Ladas, Recent developments in the oscillations of delay difference equations in "Differential Equations: Stability and Control",Dekker, New York, 1990.
  • 6G.Ladas, Explicit conditions for the oscillation of difference equations, J. Math. Anal Appl.153(1990),276-287.
  • 7V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Mathods and Applications, Acad. Press, New York, 1988.
  • 8B. S. Lalli, B. G, Zhang and Z. Li, On the oscillation of solutions and existence of positive solutions of neutral difference equations. J. Math. Anal Appl.158(1991),213--233.
  • 9B. S.Lalli and B. G.Zhang, On existence of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl.166(1992),272--287.
  • 10J. R.Spikes, Asymptotic and oscillatory behavior of first order nonlinear neutral delay differential equations, J. Math. Anal. Appl ,155(1991),562-571.

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部