期刊文献+

一类KdV-Burgers方程的间断有限元解法

LDG FEM for KdV-Burgers Equations
下载PDF
导出
摘要 根据间断有限元法的基本原理,选用基函数,构造求解KdV-Burgers方程的计算方法,并进行了误差估计,最后给出了数值例子,数值结果和理论分析是吻合的. According to the finite element method, selecting the basic function, the computational schemes of the KdV Burgers equations and the error estimates are all given. The numerical results and the theoretical analysis are consistent.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期8-11,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家重大基础研究前期专项基金(2003CCA00200)
关键词 间断有限元 KdV—Burgers方程 通量 误差估计 discontinuous Galerkin finite element method KdV-Burgers equation flux error estimations
  • 相关文献

参考文献1

二级参考文献33

  • 1F. Bassi and Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), 267-279.
  • 2D.J. Benney, Long waves on the liquid films, J. Math. Phys., 45 (1966), 150-155.
  • 3J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Computations of blow-up and decay for periodic solutions of the generalized Korteweg-de Vries-Burgers equation, Appl. Numer.Math., 10 (1992), 335-355.
  • 4J.P. Boyd, Weakly non-local solitons for capillary-gravity waves: fifth-order Korteweg-de Vires equation, Physica D, 48 (1991), 129-146.
  • 5J.P. Boyd, Numerical computations of a nearly singular nonlinear equation: Weakly nonlocal bound states of solitons for the fifth-order Korteweg-de Vires equation, J. Comput. Phys., 124(1996), 55-70.
  • 6J. Canosa and J. Gazdag, The Korteweg-de Vires-Burgers equation, J. Comput. Phys., 23 (1977),393-403.
  • 7B. Cockburn, Discontinuous Galerkin methods for methods for convection-dominated problems,in High-Order Methods for Computational Physics, T.J. Barth and H. Deconinck, editors, Lecture Notes in Computational Science and Engineering, volume 9, Springer, 1999, 69-224.
  • 8B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV- the multidimensional case, Math. Comp., 54(1990), 545-581.
  • 9B. Cockburn, G. Karniadakis and C.-W. Shu, The development of discontinuous Galerkin methods,in Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G.Karniadakis and C.-W. Shu, editors, Lecture Notes in Computational Science and Engineering,volume 11, Springer, 2000, Part I: Overview, 3-50.
  • 10B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84(1989), 90-113.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部