期刊文献+

一种基于种群多样性的自适应粒子群算法 被引量:3

An Adaptive Particle Swarm Optimization Algorithm Based on the Measurements of Population Diversity
下载PDF
导出
摘要 以信息熵的角度研究了种群多样性测度的指标,提出了一种新的自适应粒子群算法.通过对种群多样性测度新指标的应用,采用保留最优个体的精英保留变异操作、新的速度项和动态惯性权重等技术,有效提高了种群的多样性.仿真试验说明了本文算法的优点. From view of information entropy, this paper presents a new evolutionary algorithm-adaptive particle swarm optimization algorithm , which is based on the measurements of population diversity. Using the method of applying new measurements of particle swarm diversity, the algorithm uses a special mutation operator, and uses the elite individual reserved strategy, new velocity term and dynamic inertia weight to increase the swarm population diversity. The benchmark tests have showed the power of the algorithm in the numerical experiments.
作者 刘舜民 张喆
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期39-41,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(60374031)
关键词 全局优化 粒子群算法 种群多样性 动态惯性权重 global optimization particle swarm optimizer population diversity dynamic inertia weight
  • 相关文献

参考文献4

  • 1Zhang Qian, Mahdi Mahfouf. A New Structure For Particle Swarm Optimation Applicable to Single Objective and Multiobjective Problems[C]. International IEEE Conference Intelligent System Piscataway, NanJing,2006.
  • 2Jonies J A, Houck R C. On the Use of Non-stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GAs [C]. Proc IEEE Int of Evol Comp,Boston, 1994.
  • 3Fogel D. Ban Introduction to Simulated Evolutionary Optimization [J]. IEEE Trans on Neural Networks, 1994,5 (1) :3--14.
  • 4Parsopoulus K E, Parsopoulus M N. Modification of the Particle Swarm Optimizer for Locating All the Global Minima, Artificial Neural Networks and Genetic Algorithm[M]. Berlin: Springer, 2001 : 324 -- 327.

同被引文献23

  • 1王芳,雷开友,邱玉辉.一种粒子群算法的多样性策略研究[J].计算机科学,2006,33(1):213-215. 被引量:2
  • 2刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 3高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 4徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 5Ye Fun,Chen Ching-Yi.Alternative KPSO-clustering algorithm[J]. Tamkang Journal of Science and Engineering,2005,8(2): 165-174.
  • 6Kennedy J, Eberhart R.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks(ICNN), Australia, 1995 : 1942-1948.
  • 7Ratnaweera A,Halgamuge S K, Watson H C.Self-organizing hier-archical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Trans on Evolutionary Computation, 2004, 8 (3) :240-255.
  • 8Kennedy J,Eberhert R.Particle Swarm Optimization[C]//Proc.ofICNN’95.Perth,Australia:[s.n.],1995.
  • 9Riget J,Vesterstroem J S.A Diversity Guided Particle SwarmOptimizer the ARPSO[EB/OL].(2008-12-23).http://www.evalife.dk.
  • 10Shi Yuhui,Eberhart R.A Modified Particle Swarms[C]//Proc.ofIEEE Conference on Evolutionary Computation.Singapore:[s.n.],1998.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部