期刊文献+

高速硬铣削加工刀具磨损监测研究 被引量:5

Monitoring of Tool Wear in Hard Milling Process
下载PDF
导出
摘要 针对高速铣削淬硬钢加工中的刀具磨损问题,运用时域平均、离散小波分析以及希尔伯特变换等信号处理技术来提取切削力信号中与刀具磨损密切相关的特征量,并基于马氏距离法对刀具磨损状态进行监测识别。用硬铣削试验验证了该监测策略的有效性。 When high--speed milling (HSM) technology was applied to the cutting processes ot steels in their hardened states, drastical reduction of tool life is a big problem. In order to identify the state of the tool wear accurately and promptly, combinations of signal processing techniques, such as time--domain averaging, discrete wavelet transform and Hilbert spectrum analysis were adopted for extracting relevant features from the measured force signals. Tool conditions were identified directly through the recognition of these features by means of Mahalanobis distance method. Practical application results on a CNC vertical milling machine show that the proposed method is accurate for feature extraction and efficient for condition monitoring of the cutting tools.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第13期1582-1586,共5页 China Mechanical Engineering
基金 国际科技合作项目(2008DFA71750) 国家科技支撑计划重点项目(2008BAF32B00)
关键词 高速铣削 小波分析 希尔伯特变换 马氏距离 high speed milling wavelet transform Hilbert transform Mahalanobis distance
  • 相关文献

参考文献13

  • 1Axinte D A, Dewes R C. Tool Wear and Workpiece Surface Integrity When High-speed Ball Nose End Milling Hardened AISI H13 [C]// Proceedings of the 3rd International Conference on Metal Cutting and HSM. Metz, France, 2001: 171-179.
  • 2Boehner J. Effect of Carbide Tool Grades and Cutting Edge Geometry on Tool Life during High Speed Machining of Hardened Tool Steel[C]//Proceedings of the 2nd International French and German Conference on High-speed Machining. Darmstadt, Germany, 1999 :37-46.
  • 3Scheffer C, Heyns P S. Wear Monitoring in Turn- ing Using Vibration and Strain Measurements[J].Mechanical Systems and Signal Processing, 2001, 15(6) : 1185-1202.
  • 4Dutta R K, Paul S, Chattopadhyay A B. Fuzzy Controlled Backpropagation Neural Network for Tool Condition Monitoring in Face Milling[J]. International Journal of Production Research, 2000, 38 (13) : 2989-3010.
  • 5Balazinski M, Czogala E, Jamielnaik K, et al. Tool Condition Monitoring Using Artificial Intelligence [J]. Engineering Application of Artificial Intelli- gence, 2002, 15:73-80.
  • 6Byrne G, Dornfield D, Inasaki I, et al. Tool Condition Monitoring (TCM)- the Status of Research and Industrial Applications [J].Annals of CIRP, 1995,44:541-567.
  • 7Amer W, Grosvenor R I, Prickett P W. Sweeping Filters and Tooth Rotation Energy Estimation (TREE) Techniques for Machine Tool Condition Monitoring [J]. International Journal of Machine Tools & Manufacture, 2006,46 : 1045-1052.
  • 8Yesilyurt I. End Mill Breakage Detection Using Mean Frequency Analysis of Scalogram[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 450-458.
  • 9Choi Y, Narayanaswami R, Chandra A. Tool Wear Monitoring in Ramp Cuts in End Milling Using the Wavelet Transform[J]. International Journal of Advanced Manufacturing Technology, 2004,23:419- 428.
  • 10Li X L, Xin Y. Multi--scale Statistical Process Monitoring in Machining[J]. IEEE Transactions on Industrial Electronics,2005, 52 : 924-927.

同被引文献57

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部