期刊文献+

空间光滑且完整的子空间学习算法 被引量:1

Spatially Smooth and Complete Subspace Learning Algorithm
原文传递
导出
摘要 提出一种空间光滑且完整的子空间学习算法.它融合了主成分分析、空间光滑的子空间学习算法和局部敏感判别投影的技术特点.不但保持了数据流形的全局和局部几何结构,而且保持了它的判别信息和空间关系.从原始样本提取全局和局部特征经线性变换组成新样本,再从新样本中提取最佳分类特征,最后由分类器完成分类识别.同一般的子空间算法相比,该算法提高了识别率.实验结果验证了该算法的有效性. A spatially smooth and complete subspace learning algorithm is proposed for feature extraction and recognition. Based on principle component analysis, spatially smooth subspace learning and locally sensitive discriminant analysis, the proposed algorithm preserves globally and locally geometrical structure and information of discrimination and spatial correlation. The globally geometrical features and locally spatial correlation information are extracted from original data samples, and then they are linearly transformed into new data samples. Subsequently, the best features are extracted for classification. Compared with general subspace learning algorithms, the proposed algorithm improves the recognition rate. Experimental results demonstrate the effectiveness of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第3期400-405,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60776834)
关键词 子空间学习 主成分分析 局部保持投影 局部敏感判别分析 Subspace Learning, Principal Component Analysis, Locality Preserving Projection, LocallySensitive Discriminant Analysis
  • 相关文献

参考文献17

  • 1Turk M, Pentland A. Eigenface for Recognition. Cognitive Neuroscience, 1991, 3(1): 71 -86.
  • 2Belhumeur P N, Hespenha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 711 -720.
  • 3Rowels S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290 (5500) : 2323 - 2326.
  • 4Tennenbaum J B, de Silve V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(3500) : 2319 -2323.
  • 5Belkin M, Niyoki P. Laplaeian Eigenmaps and Spectral Techniques for Embedding and Clustering// Leen T K, Dietterich T G, Tresp V, eds. Advances in Neural Information Processing System. Cambridge, USA: MIT Press, 2001, 14:585-591.
  • 6He Xiaofei, Cai Deng, Yan Shuicheng, et al. Neighborhood Preserving Embedding// Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, H : 1208 - 1213.
  • 7He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (3) : 328 - 340.
  • 8Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 ( 1 ) : 40 - 51.
  • 9Cai Deng, He Xiaofei, Zhu Kun, et al. Locality Sensitive Discriminant Analysis// Proc of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India, 2007:708-713.
  • 10Cai Deng, He Xiaofei, Hu Yuxiao, et al. Learning a Spatially Smooth Subspace Learning// Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-7.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部