期刊文献+

一种具有方向特点的网络对象聚类算法 被引量:1

A Clustering Algorithm for Network Objects with Direction Factors
原文传递
导出
摘要 对分别采用欧氏距离和网络距离作为相似性测度的聚类方法进行分析,并从空间网络中对象间着手,提出一种具有方向特点的网络对象聚类算法.算法利用空间网络的邻接关系,将两种距离结合起来作为聚类的相似性测度以提高聚类的精度.算法分析和实验证明,该算法的聚类效果优于单一度量的聚类方法. Clustering methods are analyzed in which Euclidean distance and network distance are used as a similarity measure respectively. The neighbor correlation between objects on a spatial network is discussed and a clustering algorithm is proposed for network objects with consideration of direction factors. The algorithm combines the two distances as the similarity measure of clustering by using the neighbor correlation. The analysis and experimental results indicate that the effectiveness of the proposed algorithm is better than those only using one measure.
作者 唐良 方廷健
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第3期457-462,共6页 Pattern Recognition and Artificial Intelligence
关键词 空间聚类 对象聚类 空间方向 相似性测度 Spatial Clustering, Clustering Object, Spatial Direction, Similarity Measure
  • 相关文献

参考文献7

  • 1钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86
  • 2Xu R, Wunsch I D. Survey of Clustering Algorithms. IEEE Trans on Neural Networks, 2005, 16(3): 645-678.
  • 3Han J, Kamber M. Data Mining Concepts and Techniques. 2nd Edition. Orlando, USA: Morgan Kaufmann, 2006.
  • 4Yiu M L, Mamoulis N. Clustering Objects on a Spatial Network// Proc of the ACM SIGMOD international Conference on Management of Data. Paris, France, 2004:443-454.
  • 5Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise // Proc of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA, 1996: 226- 231.
  • 6陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 7Agrawal R, Jagadish H. Algorithms for Searching Massive Graphs. IEEE Trans on Knowledge and Data Engineering, 1994, 6 (2): 224 - 238.

二级参考文献38

  • 1[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 2[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 3[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 4[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 5[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 6[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.
  • 7[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235.
  • 8[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231.
  • 9[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333.
  • 10[10]Sander, J., Ester, M., Kriegel, H.-P., et al. Density-Based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998,2(2):169~194.

共引文献112

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部