期刊文献+

一般输入的折线模糊神经网络对模糊函数的通用逼近 被引量:4

Universal Approximation of Fuzzy Functions by Polygonal Fuzzy Neural Networks with General Inputs
原文传递
导出
摘要 首先基于一种扩展原理和模糊算术得到一类前向模糊神经网络——折线模糊神经网络.当模糊神经网络的输入为一般模糊数,激励函数为单调连续型Sigmoidal函数时,分析网络的拓扑结构及相关性质.然后证明该折线模糊神经网络能作为模糊连续函数的通用逼近器,其等价条件是模糊函数的递增性.因此关于输入为一般模糊数的折线模糊网络是否为通用逼近器的问题得到解决,且折线模糊神经网络的应用范围将进一步扩大. Firstly, a class of feedforward fuzzy neural networks (FNNs) , polygonal FNNs, is proposed based on a redefined extension principle and fuzzy arithmetic. Then, while the inputs are general fuzzy numbers and the active functions are monotone continuous sigmoid functions, the topologic structure and the related properties of the polygonal FNNs are analyzed systemically. Some theorems for the continuous fuzzy function can be approximated to any degree of accuracy by polygonal FNN and they are proved. Finally, the equivalent conditions are presented. Thus the problem whether the polygonal FNNs with general inputting fuzzy numbers is the universal approximator to the class of continuously increasing fuzzy function is solved, and consequently the application areas of polygonal fuzzy neural networks are extended.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第3期481-487,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60472061)
关键词 折线模糊数 模糊神经网络(FNN) 通用逼近器 模糊算术 Polygonal Fuzzy Number, Fuzzy Neural Network (FNN) , Universal Approximator, FuzzyArithmetic
  • 相关文献

参考文献14

  • 1Stinchcombe M B. Neural Network Approximation of Continuous Functionals and Continuous Functions on Compactifications. Neural Networks, 1999, 12 ( 3 ) : 467 - 477.
  • 2Searselli F, Tsoi A C. Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods and New Resuits. Neural Networks, 1998, 11 ( 1 ) : 15 - 37.
  • 3Chen Tianping, Chen Hong, Liu R W. Approximation Using Capability in C(Rn) by Muhilayer Feedforward Networks and Related Problems. IEEE Trans on Neural Networks, 1995, 6( 1 ) : 25 -30.
  • 4Buckley J J, Hayashi Y. Can Fuzzy Neural Nets Approximate Continuous Fuzzy Functions? Fuzzy Sets and Systems, 1994, 61 (1) : 43 -51.
  • 5Buckley J J, Hayashi Y. Can Neural Nets Be Universal Approxima- tots for Fuzzy Functions? Fuzzy Sets and Systems, 1999, 101 (3) : 323 - 330.
  • 6Liu Puyin. Analyses of Regular Fuzzy Neural Networks for Approximation Capabilities. Fuzzy Sets and Systems, 2000, 114 (2): 329 - 338.
  • 7刘普寅,汪浩.正则模糊神经网络对于连续模糊函数的近似能力研究[J].中国科学(E辑),1999,29(1):54-60. 被引量:7
  • 8Liu Puyin. Universal Approximation of Continuous Fuzzy-Valued Functions by Multi-Layer Regular Fuzzy Neural Networks. Fuzzy Sets and Systems, 2001, 119(2) : 313 -320.
  • 9刘普寅.正则模糊神经网络是模糊值函数的泛逼近器[J].控制与决策,2003,18(1):19-23. 被引量:3
  • 10Liu Puyin, Li Hongxing. Approximation Analysis of Feedforward Regular Fuzzy Neural Networks with Two Hidden Layers. Fuzzy Sets and Systems, 2005, 150(2) : 373 -396.

二级参考文献17

  • 1刘普寅.A novel fuzzy neural network and its approximation capability[J].Science in China(Series F),2001,44(3):184-194. 被引量:2
  • 2陈天平.神经网络及其在系统识别应用中的逼近问题[J].中国科学(A辑),1994,24(1):1-7. 被引量:50
  • 3陆金桂,余俊,王浩,陈新度,周济,肖世德.基于人工神经网络的结构近似分析方法的研究[J].中国科学(A辑),1994,24(6):653-658. 被引量:46
  • 4毛志宏,中国科学.E,1997年,27卷,4期,362页
  • 5Zeng X J,IEEE Trans Fuzzy Systems,1995年,3卷,2期,219页
  • 6陈天平,中国科学.A,1994年,24卷,1期,1页
  • 7陆金桂,中国科学.A,1994年,24卷,6期,653页
  • 8SCARSELLI F, TSOI A C. Universal approximation using feedforward neural networks: A survey of some existing methods and new results [J]. Neural Networks, 1998, 11(1) : 15 - 17.
  • 9CHEN T P, CHEN H. Approximation using capability in by multilayer feedforward networks and related problems [ J]. IEEE Transaction on Neural Networks, 1995, 6(1) : 25 - 30.
  • 10BUCKLEY J J, HAYASHI Y. Can neural nets be universal approximators for fuzzy functions[ J]. Fuzzy Sets and Systems, 1999(101) : 323 - 330.

共引文献24

同被引文献17

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部