摘要
从仿真实验角度对支持向量机弹道识别方法的精度作进一步的分析和讨论.首先分析导致样本错分的原因,随后分别详细讨论样本数目、采样间隔和雷达噪声对识别精度的影响,得到一些重要且有意义的结论.
The ballistic recognition accuracy is further discussed and analyzed in terms of simulation experiments. Firstly, the reason for causing the misclassified samples is analyzed. Then, the influences of the number of training samples, the interval of sampling and the noise of radar on the recognition accuracy are respectively discussed in detail. Finally, several significant and interesting results are achieved.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2009年第3期494-498,共5页
Pattern Recognition and Artificial Intelligence
基金
国家973计划项目(No.2004CB318103)
国家自然科学基金重点项目(No.60835002)资助
关键词
弹道外推
弹道识别
机器学习
支持向量机(SVM)
精度
Ballistic Extrapolation, Ballistic Recognition, Machine Learning, Support Vector Machine(SVM) , Accuracy