期刊文献+

支持向量机弹道识别方法的精度分析 被引量:4

Accuracy Analysis of SVM Based Ballistic Recognition Approach
原文传递
导出
摘要 从仿真实验角度对支持向量机弹道识别方法的精度作进一步的分析和讨论.首先分析导致样本错分的原因,随后分别详细讨论样本数目、采样间隔和雷达噪声对识别精度的影响,得到一些重要且有意义的结论. The ballistic recognition accuracy is further discussed and analyzed in terms of simulation experiments. Firstly, the reason for causing the misclassified samples is analyzed. Then, the influences of the number of training samples, the interval of sampling and the noise of radar on the recognition accuracy are respectively discussed in detail. Finally, several significant and interesting results are achieved.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第3期494-498,共5页 Pattern Recognition and Artificial Intelligence
基金 国家973计划项目(No.2004CB318103) 国家自然科学基金重点项目(No.60835002)资助
关键词 弹道外推 弹道识别 机器学习 支持向量机(SVM) 精度 Ballistic Extrapolation, Ballistic Recognition, Machine Learning, Support Vector Machine(SVM) , Accuracy
  • 相关文献

参考文献9

  • 1陶卿,刘欣,唐升平,丁永清.基于支持向量机的弹道识别及其在雷达弹道外推中的应用[J].兵工学报,2005,26(3):308-311. 被引量:11
  • 2刘欣,陶卿,唐升平,章显.一种基于SVM的炮位校射雷达弹道外推新方法[J].火力与指挥控制,2007,32(3):8-11. 被引量:5
  • 3Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: John Wiley Sons, 2001.
  • 4Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995.
  • 5Cristianini N, Sehawe-Taylor J. An Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press, 2000.
  • 6Tao Qing, Wang Jue. A New Fuzzy Support Vector Machine Based on the Weighted Margin. Neural Procession Letters, 2004, 20(3) : 139 - 150.
  • 7Tao Qing, Wu Gaowei, Wang Feiyue, et al. Posterior Probability Support Vector Machines for Unbalanced Data. IEEE Trans on Neural Networks, 2005, 16(6): 1561- 1573.
  • 8Tao Qing, Wu Gaowei, Wang Jue. A General Soft Method for Learning SVM Classifiers with L1-Norm Penalty. Pattern Recognition, 2008, 41(3) : 939 -948.
  • 9Tao Qing, Chu Dejun, Wang Jue. Recursive Support Vector Machines for Dimensionality Reduction. IEEE Trans on Neural Networks, 2008, 19( 1 ) : 189 - 193.

二级参考文献8

  • 1Vapnik V. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1999 : 1 - 226.
  • 2边肇祺.张学工模式识别[M].北京:清华大学出版社,2001.284-304.
  • 3Gunn S. Support vector machine for classification and regression [ R ]. ISIS Report. Image Speech & Intelligent Systems Group,University of Southampton, 1998 : 1 - 49.
  • 4Tao Qing, Wu Gaowei, Wang Jue. A generalized S-K-algorithm for learning ν-SVM classifiers [ J ]. Pattern Recognition Letters,2004, 25(10) : 1165 - 1171.
  • 5边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 6Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1999.
  • 7Gunn S.Support Vector Machine for Classification and Regression[R].ISIS Report.Image Speech & Intelligent Systems Group,University of Southampton,1998.
  • 8陶卿,曹进德,孙德敏.基于支持向量机分类的回归方法[J].软件学报,2002,13(5):1024-1028. 被引量:46

共引文献11

同被引文献28

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部